

IDEA-FAST

Identifying Digital Endpoints to Assess FAtigue, Sleep and acTivities in
daily living in Neurodegenerative disorders and Immune-mediated

inflammatory diseases.

Grant Agreement No. 853981

WP5 – Data Management

D5.2: Data Management Platform
Specification

Lead contributor P9 - ICL

Other contributors P20 - PLUR

P35 - Janssen

P44 - SARD

P

Due date 31 Oct 2020

Delivery date 30 Oct 2020

Deliverable type R

Dissemination level PU

Document History

Version Date Description

V0.1 10 Oct 2020 First Draft

V0.2 21 Oct 2020 Additional Content

V0.3 26 Oct 2020 Additional Content

V0.4 27 Oct 2020 Additional Content

V1.0 30 Oct 2020 Final Version

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 2/51

Table of Contents

1 Abstract .. 4

2 Introduction ... 5

3 Infrastructure and General Environment ... 6

3.1 Physical Environment .. 6

3.2 Execution Environment ... 6

3.3 Infrastructure Strategy ... 8

3.4 Security Rationale ... 8

4 Data Storage and Sharing .. 8

4.1 Data Integration .. 9

4.2 Data Storage .. 9

4.3 Data Sharing and Exploration .. 10

5 Authentication, Authorisation and User Management ... 10

5.1 Authentication Mechanisms .. 11

5.2 Authorisation Mechanisms ... 12

5.3 User Management .. 12

6 API Specifications .. 13

6.1 Authentication via APIs .. 14

6.2 Obtaining File List via APIs .. 16

6.3 Uploading Files via APIs ... 17

6.4 Downloading Files via APIs ... 18

6.5 API Versioning ... 19

7 Analytical Environment .. 19

8 Security and Regulatory Compliance ... 21

8.1 Introduction .. 21

8.1.1 Scope and Goals ... 21

8.1.2 Target Audience and How-to-Use .. 21

8.1.3 General Scope.. 22

8.1.4 Definitions and Acronyms ... 22

8.2 Proposed Approach to Security for the DMP ... 23

8.2.1 Assumptions and Dependencies... 24

8.3 System Security Features and Requirements ... 25

8.3.1 Remarks on Requirements .. 25

8.3.2 Security Requirements Overview ... 26

8.3.3 Security Requirements Complete List .. 27

9 Conclusions ... 27

Appendix A – User Guide to DMP V0.6.0.. 28

Appendix B – DMP Data Schema ... 32

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 3/51

Appendix C – GraphQL Requests for User Authentication and Data Transfer .. 35

Appendix D – Security Requirement Descriptions .. 38

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 4/51

1 Abstract

This document details the specification of the IDEA-FAST Data Management Platform (DMP). It

defines the functionality requirements of the DMP, with detailed explanations on the DMP components

including Data Storage and Sharing, Authentication, Authorisation and User Management, APIs and

Analytical Environment. It also describes the technical specifications of the underlying infrastructure

of the DMP. System security features and requirements are also outlined.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 5/51

2 Introduction

The IDEA-FAST project aims to identify novel digital endpoints for fatigue and sleep disturbances

that will provide more reliable, objective and sensitive evaluation of the severity and impact of these

symptoms in the person’s normal surrounding. Data on fatigue, sleep, selected activities of daily living

and other relevant contextual information will be collected during the project, including

pseudonymised participant demographic, clinical and patient-reported outcome data, device data from

participants during the periods of device use, as well as data generated from analyses of the clinical

and/or device datasets. Such datasets are expected to provide an invaluable resource for clinical

practice, well-being of the patients, drug development, healthcare provision, health and wealth of the

society and research and innovation.

It is essential to have a shared work environment where all the project data are curated to high quality,

integrated for analysis and robustly managed with security and privacy assurance. The IDEA-FAST

DMP is being designed and developed to address these needs. All data generated in the IDEA-FAST

project will be integrated and stored on the DMP using a secure and robust process that is fully

compliant with European data privacy and security legislation and standards, in particular the General

Data Protection Regulation (GDPR).

This document details the specification of the IDEA-FAST DMP. Each section defines a set of

requirements that describe the functionality of the DMP as well as the current and future development

of the DMP to meet these requirements, include:

• Infrastructure and General Environment, where technical specifications of the DMP’s

underlying infrastructure are described, along with the infrastructure strategy and security

rationale (section 3);

• Data Storage and Sharing, where we give an overview of the IDEA-FAST data flow, as well

as the functionalities of the DMP in terms of data integration, storage, sharing and exploration

(section 4);

• Authentication, Authorisation and User Management, where mechanisms used for Identity

and Access Management are described (section 5);

• Application Programming Interfaces (APIs) Specifications, where APIs for authentication,

and file transfer are defined (section 6);

• Analytical Environment, where we describe the architecture and components of the DMP’s

analytical environment (section 7);

• Security and Regulatory, where the security features and requirements are defined, along

with the proposed approach to cybersecurity (section 8).

All the above components form a coherent platform for large-scale healthcare and medical data

management and analysis. The production version of the DMP is deployed at https://data.ideafast.eu.

The latest version of the DMP (as of October 2020) is v0.6.0. Documentation and user manuals of the

DMP will be publicly accessible from the project GitHub repository1, as well as the source code for

the software developed during the project.

1 https://github.com/ideafast

https://data.ideafast.eu/

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 6/51

3 Infrastructure and General Environment

3.1 Physical Environment

As part of its plan to host IDEA-FAST data for the duration of the project and beyond, Imperial College

London (ICL) will be utilising equipment and tools it owns, located in an ISO 9000 certified and ISO

27001 compliant data centre. The physical security, facility maintenance and emergency operations

are run by “VIRTUS Data Centres”. The data centre caged pods utilised are located at: VIRTUS

LONDON4 Slough Campus, Data Hall 3, 13 Liverpool Road, Slough, SL1 4QZ, United Kingdom.

The list of data centre certifications includes:

• BS EN ISO 9001:2015 – Quality Management

• BS EN ISO 14001:2015 – Environmental Management

• ISO/IEC 27001:2013 – Information Security Management

• BS EN ISO 50001:2011 – Energy Management

• ISO/IEC 20000-1:2011 - Service Management

• ISAE3402 Certification compliance

• PCI DSS v3.2 Compliant

• BREEAM Excellent

• Uptime Institute - Management & Operations

3.2 Execution Environment

The IDEA-FAST DMP is designed to be run in cloud-native environment in a way that it can be made

resistant to environmental perturbations. To support WP5, will use a mutualised cloud installation

based on Canonical MAAS and OpenStack.

The underlying infrastructure of the DMP uses reproducible deployments by employing metal-as-a-

service provisioning for the installation of its OpenStack components (Table 1). This allows for a zero-

touch centralised configuration of the various pieces of software used to power the platform.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 7/51

Table 1: A list of the components used in the underlying infrastructure of the DMP.

Component Description

aodh AODH is the Alarming service, it enables the ability to trigger actions based on

defined rules against metric or event data collected by Ceilometer or Gnocchi.

ceilometer Ceilometer is a data collection service that provides the ability to normalise and

transform data across all OpenStack core components it is a component of the

Telemetry project. Its data can be used to provide resource tracking and alarming

capabilities across all OpenStack core components.

ceilometer-agent The ceilometer agent is a data gathering component that is executed alongside

computational workloads to provide monitoring metrics.

ceph-mon The Ceph monitor is the cluster monitor daemon for the Ceph distributed file

system. One or more instances of ceph-mon form a Paxos part-time parliament

cluster that provides extremely reliable and durable storage of cluster

membership, configuration, and state. It provides management and health status

checks for the block and object storage underlying Ceph deployment.

ceph-osd The CEPH OSD is the object storage daemon for the Ceph distributed file

system. It is responsible for storing objects on a local file system and providing

access to them over the network.

ceph-radosgw A utility for interacting with a Ceph object storage cluster (RADOS), part of the

Ceph distributed storage system.

cinder-ceph This is a bridge connector for using Ceph in Cinder environments.

cinder Cinder is the OpenStack Block Storage service for providing volumes to Nova

virtual machines, Ironic bare metal hosts, containers and more.

glance Image service project which provides a service where users can upload and

discover data assets that are meant to be used with other services.

gnocchi Operational data integration and analysis tooling.

horizon Web-based management user interface provider.

keystone Service that provides API client authentication, service discovery, and distributed

multi-tenant authorization.

keystone-ldap-ict Connector for LDAP support in Keystone.

memcached An in-memory key-value store for small chunks of arbitrary data (strings, objects)

from results of database calls, API calls, or page rendering.

mysql-innodb-cluster InnoDB is a storage engine for the database management system supported for

MySQL.

neutron-api Controller service to provide “network connectivity as a service” between interface

devices in cloud fabric.

neutron-api-plugin-ovn Neutron driver plugin for Open Virtual Network in Linux kernel.

nova-cloud-controller Provider for compute instances management. Nova supports creating virtual

machines, it is not planned to support IDEA-FAST ontop baremetal servers as it

would require Ironic but MAAS is already used.

nova-compute Provider for compute instances libvirt engine and execution.

ntp Time synchronisation daemon.

ovn-central Service for management software defined network layout in Open Virtual Network

environments.

ovn-chassis Compute instance connector agent for Open Virtual Network.

placement Service responsible for tracking inventory of resources available in a cloud and

assisting in choosing which provider of those resources will be used when

creating a virtual machine.

rabbitmq-server Messaging service to broker communication across all other infrastructure

services.

vault Software enclave for securing, storing and tightly controlling access to tokens,

passwords, certificates, encryption keys for protecting secrets and other sensitive

data.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 8/51

3.3 Infrastructure Strategy

In order to minimise maintenance cost in terms of person-resource, the underlying infrastructure of the

IDEA-FAST DMP is implemented in autonomous deployment. The DMP utilises Canonical MAAS,

which is driven by Canonical Juju, to orchestrate the deployment of a fully high-availability capable

OpenStack Infrastructure.

High availability of the Juju management controller is enabled, and all configuration of OpenStack

services is operated via Juju. Operation data are stored in a three-node MongoDB cluster.

The OpenStack infrastructure features a replicated 4 instances MySQL cluster for storage of operation

data.

3.4 Security Rationale

In order to ensure maximum security as well as drive compliance up, servers are deployed with

dynamically generated SSH keys and hardened prior to being placed online, rendering it impossible

for even the infrastructure administrator to access the servers.

To prevent physical attack on the server and data exfiltration from hard drives, all systems are already

deployed with LUKS locking full drive encryption. Token for the encryption are generated

dynamically, one per drive and stored in a multi-component Shamir key secured Vault with rotating

master. The Vault is instantiated in-memory and requires 3 components of the key to be restarted or

recovered from outage.

Large block and object storage are secured in a similar fashion for data safety powered by a three-tier

data replication across multiple rack in our data hall. Note this means that IDEA-FAST data is not

protected against area-wide natural disaster.

All inter-service communication is done over TLS v1.3 using rotating certificates provided

dynamically by the Vault instance. The Vault instance derives its signing right from an Intermediate

X509 certificate from the Data Science Institute of ICL. The X509 certificate itself derives from a

10-year valid CA Root certificate from the Data Science Institute of ICL.

4 Data Storage and Sharing

The DMP will provide secure large-scale data storage and data sharing environment to host data

generated in the IDEA-FAST project as well as extant datasets provided by the academic and EFPIA

partners. Such environment is essential to ensure data conforms to the FAIR (findable, accessible,

interoperable and reusable) data principles. Data managed by the DMP will be mirrored at all times to

prevent accidental loss. A snapshot of the DMP will be created and achieved on a bi-weekly basis for

backup purpose.

Diverse datasets which are expected to be stored and shared by the DMP, include:

• Pseudonymised participant demographic, clinical and patient-reported outcome data, generated

from the Feasibility Study and the Clinical Validation Study;

• Device data from participants during the periods of device use in the Feasibility Study and the

Clinical Validation Study;

• Relevant extant datasets shared by the academic and EFPIA partners.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 9/51

4.1 Data Integration

The flow of IDEA-FAST data is shown in Figure 1. Clinical data generated in the project will be first

captured in the clinical database/eCRF system managed by the University of Cambridge (UCAM) in

WP2, and then transferred to the DMP via secure APIs. Device data generated in the project will be

first stored in device software (or application on a study smartphone), and then transferred to the DMP

via secure APIs. The estimated size of data collected during the project is less than 10GB per

participant, including clinical data and device data.

The DMP will provide functionality for data integration, sharing, exploration and analysis. Clinical

and device data transferred to the DMP will be standardised against the IDEA-FAST clinical data

standards and device data standards, which consist of metadata templates, control vocabularies and

data dictionaries, and will be designed and delivered by Month 24 of the IDEA-FAST project. The

standardised data will then be integrated across different domains (e.g. demographics, diagnosis,

laboratory tests, medications), across studies (e.g. Feasibility Study and Clinical Validation Study) and

across multiple digital devices. The integrated data will then be saved in the storage component/layer

of the DMP for data sharing and analysis.

Figure 1: Data flow of the IDEA-FAST datasets and major components of the DMP.

4.2 Data Storage

There are four major components in the DMP (Figure 1): the web-based user interface (UI) which

allows users to interact with DMP via a web browser; the DMP backend which receives and processes

requests; the storage where data is saved and stored; and the analytical environment which enables

users to run their analysis on the DMP. The storage component/layer of the DMP provides reliable,

scalable data storage by using NoSQL database MongoDB and S3 compatible high-performance object

storage.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 10/51

The following data forms will be managed in the DMP:

• Raw data, which refers to the data captured in the UCAM clinical database and device

software/applications without processing;

• Integrated data, which refers to the dataset that processed and standardised clinical and device

data are integrated into a common model for querying and analysis;

• Metadata, which refers to the data that describes the IDEA-FAST clinical data and device data

(e.g., properties of a dataset or a variable);

• Analytical results, which refers to the data generated from analyses of one or both of the above

datasets.

Clear version numbers of the datasets will be provided through the DMP. Change logs that contain

lists of notable changes for each version of the datasets will be automatedly generated to track changes.

4.3 Data Sharing and Exploration

The DMP will provide a web-based UI with secure access control that allows users to access the

pseudonymised clinical and device data for data exploration and analysis. Keyword-based search

functions are provided via the UI to improve data findability and reusability. The implementation of

the UI makes use of React, which is a component-based JavaScript library for interactive UI

development. Data querying and manipulation are performed via GraphQL.

It is a fundamental premise that no data shall be accessible to any party, internal or external, without

full ethical sanction, and that only pseudonymised data will be shared within the Consortium. Identity

management and access control mechanisms are in place to enhance security and ensure compliance

(Section 5).

The DMP also allows users to upload data files to a study hosted on the DMP via the UI or APIs

(Section 6.3 and Appendix A). Users can also perform integrated data modelling and analysis to

identify novel digital endpoints via the Analytical Environment of the DMP (Section 7). An automated

audit trail functionality tracks all queries/analyses performed against the DMP for provenance and

accountability.

5 Authentication, Authorisation and User Management

The datasets generated in the IDEA-FAST project and the extant datasets provided by the academic

and EFPIA partners contain sensitive information (e.g. a participant’s clinical records). To enhance

data security and increase data privacy protection, identity management and access control

mechanisms need to be in place to protect sensitive datasets from breaches and unauthorised access.

The IDEA-FAST DMP is designed to provide efficient and secure mechanisms to cope with

sophisticated data privacy legislations and requirements for clinical data management, in particular to

comply with the GDPR. Authentication and authorisation mechanisms are being designed and

implemented to verify users’ identity and manage access rights and privileges to data resources. A

brief explanation and comparison of authentication and authorisation are summarised in Table 2.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 11/51

Table 2: Summary of authentication and authorisation mechanisms.

 Authentication Authorisation

Purpose Verifies users’ identity. Validates users’ access permissions to

resources.

Order of the

process

Authentication is performed at the very

first step when a user tries to access the

DMP, before authorisation.

Authorisation is performed when a user

requests to access resources managed by

the DMP, after authentication.

Techniques Examples:

• Password-based authentication

• Two-factor/multi-factor

authentication

• Captcha test

• Biometric authentication

Examples:

• Open Authorisation (OAuth)

• Role-based access controls

• Token-based authorisation

• Access Control Lists

5.1 Authentication Mechanisms

Authentication is the process of validating a user’s identity in order to permit access to the DMP.

During the process, the user’s credentials (such as username/user ID and password) are checked and

verified by the DMP. In DMP v0.6.0, a Two-Factor Authentication (2FA) mechanism has been

implemented to secure access to project datasets:

• Password-based authentication: anyone who would like to access the DMP is required to

register his or her credentials (username, password, email address, first/last name and

organisation) with the DMP. The username and password need to be provided every time when

a registered user wants to access the DMP for authentication.

Users’ account information is stored in the DMP and protected by advanced cryptography

techniques. For example, cryptographic salts are used to safeguard passwords in storage. A

random string of characters (i.e. a cryptographic salt) is added to each password before the

password is hashed, which produces a unique hash to be stored in the DMP. These techniques

can protect the DMP against different types attacks, such as rainbow table attacks, and slow

down dictionary and brute-force attacks.

• 2FA: a registered user needs to provide two different authentication factors (password and a

6-digit Time-based One-time Password, TOTP) to verify his or her identify when accessing the

DMP. 2FA adds an additional layer of security to the authentication process as it prevents

unauthorised users from gaining access to an account with a stolen password.

The TOTP used during the authentication process is generated from a TOTP algorithm that

complies with Internet Engineering Task Force (IETF) standard RFC 6238. Once a user has

completed the registration form, a confirmation email will be sent to the user with a Base32

secret key. The user can then use a standard authentication application (e.g., Google

Authenticator and Microsoft Authenticator) to register the key for generating TOTPs (also see

Section 8.1 for details).

• API authentication: the DMP allows registered users to access the platform via a web

interface (data.ideafast.eu) and GraphQL-based APIs. The API authentication mechanism

allows users to verify their identities in a programmatic manner. In DMP v0.6.0, an HTTP

Basic authentication mechanism is used, in which a registered user needs to provide his or her

username, password and the TOTP in a login request for authentication (see Section 6.1 for

details).

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 12/51

In future versions of the DMP, a public-key authentication mechanism will be designed and

implemented for better interaction with other IDEA-FAST related systems and applications. In

particular, a public-key management mechanism will be developed to handle public-key

credentials of registered users and applications, and a digital signature verification function

will be implemented to verify the requester’s identity. A web-based key generation service will

also be provided by the DMP with which users can generate key pairs on the client-side. The

DMP server will not obtain any information from this service, thus preserving users’ privacy.

5.2 Authorisation Mechanisms

Authorisation is the process for determining whether the authenticated user has access to the particular

resources on the DMP. During this process, the authenticated user’s rights and permissions are checked

and verified by the DMP. In DMP v0.6.0, Role-based Access Control (RBAC) has been implemented

to secure access to project datasets:

• RBAC: registered users are granted access to resources on the DMP based on their roles.

RBAC allows access control to be managed at a very granular level. Each role is associated

with a set of permissions and privileges defined by the DMP. In DMP v0.6.0, roles are

implemented both at a system level (e.g. ‘system admin’ and ‘system user’ of the DMP) and a

resource level (e.g. ‘data manager’, ‘data uploader’ and ‘data viewer’ of a study). The roles and

their associated rights are centrally managed by the ICL team. The difference between roles

are summarised in Section 5.3.

• Attribute-based Access Control (ABAC): ABAC allows access rights to be assigned to a

registered user based on a set of policies. A policy is expressed by attributes, which can be

characteristics of users, resources, object or environment. In future versions of the DMP,

ABAC will be designed and developed according to the project needs. For example, a user who

belongs to an organisation may have the permission to delete data files which are uploaded by

a member of the same organisation.

• API Authorisation: token-based authorisation mechanism such as JSON Web Token (JWT)

may be designed and developed in future versions of the DMP according to the project needs.

Once a registered user or application has successfully logged in to the DMP via public-key

authentication, an access token which is associated with the requester’s permissions with an

expiration time can be generated by the DMP and issued to the requester. The requester can

then use this token to interact with the DMP’s APIs until the token expires.

5.3 User Management

User management functions provided by the DMP include: 1) registering new users; 2) modifying

existing users; 3) assigning/removing permissions of users; and 4) logging user activities:

• Registering new users: a new user needs to create an account on the DMP by completing the

user registration form via the DMP’s web interface. A confirmation email with a Base32 secret

key will sent to the new user’s email address after the form is submitted (see Section 5.1 and

Appendix A). The new user’s role is set to ‘system user’ by default, and the user has no access

to any resource on the DMP at the time of registration. The new user needs to contact a system

administrator or a data manager to get access to a dataset hosted on the DMP.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 13/51

• Modifying exist users: a user’s account information (e.g. organisation, account expiry date

and user type) can be updated by a system administrator of the DMP. Note that some user

account information (e.g. username and email address) cannot be changed after registration.

An account expiration control mechanism is in place to enforce user accounts to be reviewed

regularly. All user accounts on the DMP have an expiration date no more than 3 months. The

ICL team in WP5 will contact representatives of each IDEA-FAST partners on a quarterly basis

to ensure all users on the DMP are active participants in the IDEA-FAST project.

• Assigning/removing permissions of users: granular permission control based on RBAC is

implemented in the DMP. A system admin can assign system-level roles to users, and a system

admin/data manager can assign resource-level roles to users to manage access of a specific

dataset. Table 3 summarises different user roles and their rights in the DMP.

• Logging user activities: all user activities on the DMP are tracked and recorded in an activity

log. Malicious activities (e.g. suspicious logon and logoff attempts) can be identified which

can reduce security risks and prevent data breaches. An activity log record contains information

including the username, operation type, time and the request status. Note that the user activity

log is only visible to the system admins. Distributed Ledger and Smart Contract technologies

may be used in future versions of the DMP to provide transparent and tamper-resistance audit

logs according to the project needs.

Table 3: Different user roles in the DMP.

Role Rights

System-level User Roles

System Admin Log in to the DMP, view the list of users, view and modify account

information, deactivate/reactivate a user, delete a user account, create and

delete a dataset, access datasets on the DMP, access user activity log

System User Log in to the DMP, access datasets based on permission

Resource-level User Roles

Data Manager View the dataset, assign resource-level roles to users, manage access

control for the dataset, upload data to the dataset, download data from the

dataset, delete data in the dataset, run analysis on the dataset in the DMP

analytical environment

Data Uploader View the dataset, upload data to the dataset, run analysis on the dataset in

the DMP analytical environment

Data Downloader View the dataset, download data from the dataset, run analysis on the

dataset in the DMP analytical environment

Data Viewer View the dataset, run analysis on the dataset in the DMP analytical

environment

6 API Specifications

APIs of the DMP are a set of definitions and protocols which define how other systems and

applications (e.g. clinical eCRF and patient-facing application) can interact with and transfer data

to/from the DMP. APIs of the DMP allow users to access resources hosted on the platform while

maintaining security and control. They also provide flexibility for development and integration of

different systems and applications that are being developed in the project.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 14/51

We build the APIs of the DMP based on GraphQL, an open-source domain-specific language for data

query and manipulation. GraphQL provides flexible access to the underlying data through

composition, selection and mutation. Rather than using various path based URIs and HTTP methods,

it uses a single endpoint with a predefined schema that specifies how to fetch and change data.

Compared to other API design architectures such as REST, GraphQL allows clients to make more

precise APIs calls to fetch exactly the data they required from the server, therefore preventing over-

and under-fetching.

In DMP v0.6.0, the APIs for authentication, uploading and downloading data files have been

implemented and released. The API requests can be made and tested using Postman, a widely used

tool for API development.

6.1 Authentication via APIs

A client needs to be authenticated by the DMP before it can upload or download any data via APIs.

For a registered user, the DMP uses the password-based authentication with the 2FA mechanism to

verify the identity of the user, as mentioned in Section 5.1. The registered user needs to send the login

data (i.e. username, password and the TOTP) in a GraphQL query (see Appendix C, Code C.1) to the

DMP server.

HTTP request:

• Endpoint: https://data.ideafast.eu/graphql

• Method: POST

An example of a GraphQL query for user authentication can be found in Appendix C. Note that the

returned data structure in a GraphQL query is flexible and users can precisely specify the required

data. Table 4 lists the query parameters:

Table 4: List of parameters in a login request.

Parameters Value Type Description

username string Username as registered on the DMP.

password string User’s password.

totp string The TOTP generated from the QR code included in the

registration confirmation email, see Section 4.1 for details.

After the query has been processed and the client’s identity is verified, the server will send the client

a response of which the header includes cookies in the following format:

Code 1: An example of the cookie in the server’s response header.

1. connect.sid=s%3AL6IUbbRzU456N5MUuIepcrWBHt6UnKdD.BILO2momQ6KFGreU5Gdv3wfwRayDf
SFvOV8Km9yOPmI; Path=/; HttpOnly

The response cookies need to be attached to any further requests made by the client as a proof of the

client’s identify. In DMP v0.6.0, the response cookie is set to be valid for a fixed period of 2 hours. A

new login request needs to be made for accessing the DMP after 2 hours.

An example of the structure of a response body is shown in Code 2, with properties listed in Table 5.

https://data.ideafast.eu/graphql

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 15/51

Code 2: An example of the structure of a response body of a login request.

1. {
2. "id": ****,
3. "username": ****,
4. "type": ****,
5. "firstname": ****,
6. "lastname": ****,
7. "email": ****,
8. "organisation": ****,
9. "description": "",
10. "access": {
11. "id": ****,
12. "projects": [
13. {
14. "id": ****,
15. "name": ****,
16. "studyId": ****
17. }
18.],
19. "studies": [
20. {
21. "id": ****,
22. "name": ****
23. },
24.]
25. },
26. "createdAt": ****,
27. "expiredAt": ****
28. }

Table 5: List of properties that can be returned by a login request.

Property Value Type Description

id string The requester’s user ID.

username string The requester’s username as registered on the DMP.

type string The requester’s user type, e.g., standard user or system

admin.

firstname string The requester’s first name as registered on the DMP.

lastname string The requester’s last name as registered on the DMP.

email string The requester’s email address as registered on the DMP.

organization string The requester’s organisation as registered on the DMP.

The organisation should be one of the 47 IDEA-FAST

project participant organisations.

description string The requester’s user description as registered on the DMP.

access object Information of the requester’s accessibility to the

studies/projected on the DMP. The granted

studies/projects are shown in a list with their IDs and

names.

createdAt number The time at which the requester created the account.

expiredAt number The time at which the requester’s account expires.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 16/51

6.2 Obtaining File List via APIs

If a client/registered user has access to a study hosted on the DMP, the client/registered user can get

the list of all data files of that study along with the file properties.

HTTP request:

• Endpoint: https://data.ideafast.eu/graphql

• Method: POST

An example of a GraphQL query for obtaining files associated with a study can be found in Appendix

C. In DMP v0.6.0, the parameter required in this query is ‘studyID’, which is a string representing the

ID of the study. Advanced filter functions will be designed and implemented in future API versions to

allow users to retrieve a list of files matching some given conditions such all files associated with a

specific participant cohort or a specific type of device.

If the query is successful, a response with the information of the files will be returned to the requester.

An example of the structure of a response body is shown in Code 3, with properties listed in Table 6.

Code 3: An example of the structure of a response body of a getStudy request.

1. {
2.
3. "files": [
4. {
5. "id": ****,
6. "fileName": ****,
7. "studyId": ****,
8. "projectId": ****,
9. "fileSize": ****,
10. "description": ****,
11. "uploadTime": ****,
12. "uploadedBy": ****
13. }
14.],
15.
16. }

Table 6: List of properties that can be returned by a getStudy request.

Property Value Type Description

files list The list of files associated with a given study.

file.id string The unique ID of the file.

file.fileName string The name of the file.

file.studyId string The ID of the study that the file belongs to.

file.projectId string The ID of the project that the file belongs to.

file.fileSize number The size of the file in bytes.

file.description string The description of the file. In DMP v0.6.0, the description of a

device data file includes the ID of the participant from whom the

data was collected, the ID of the device generating the data, the

start date of data collection and the end date of data collection.

file.uploadTime string The time at which the file was uploaded.

file.uploadedBy string The ID of the user who uploaded the file.

https://data.ideafast.eu/graphql

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 17/51

6.3 Uploading Files via APIs

A client/registered user can upload data files to a study hosted on the DMP via APIs.

HTTP request:

• Endpoint: https://data.ideafast.eu/graphql

• Method: POST

An example of a GraphQL query for uploading files to a study can be found in Appendix C. The query

parameters are listed in Table 7.

Table 7: The list of parameters in an uploadFile request.

Parameters Value Type Description

file null The file to be uploaded to the DMP.

studyId string The ID of the study that the file belongs to.

description string The description of the file. In DMP v0.6.0, the description of a

device data file includes the ID of the participant from whom the

data was collected, the ID of the device generating the data, the

start date of data collection and the end date of data collection.

If the query is successful, a response with the uploaded file information will be returned to the

requester. An example of the structure of a response body is shown in Code 4, with properties listed

in Table 8.

Code 4: An example of the structure of a response body of an uploadFile request.

1. {
2. "id": ****,
3. "fileName": ****,
4. "studyId": ****,
5. "projectId": ****,
6. "fileSize": ****,
7. "description": ****,
8. "uploadedBy": ****
9. }

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 18/51

Table 8: List of properties can be returned by an uploadFile request.

Property Value Type Description

id string The ID assigned to the uploaded file.

fileName string The name of the uploaded file.

studyId string The ID of the study that the file belongs to.

projectId string The ID of the project that the file belongs to.

fileSize number The size of the uploaded file in bytes.

description string The description of the file. In DMP v0.6.0, the description of a

device data file includes the ID of the participant from whom the

data was collected, the ID of the device generating the data, the

start date of data collection and the end date of data collection.

uploadedBy string The ID of the user who uploaded the file.

6.4 Downloading Files via APIs

If a client/registered user has access to a study hosted on the DMP, the client/registered user can

download the files under the study via APIs. The ID of the file (which can be obtained by a getStudy

request as described in Section 6.2) needs to be specified in the request.

HTTP request:

• Endpoint: https://data.ideafast.eu/file/:fileId

• Method: GET

Example:

• https://data.ideafast.eu/file/108be45e-440b-48d9-9730-4319db4e335b

Note that the cookies obtained during authentication (see Section 6.1) need to be attached as the header

of the request as a proof of the requester’s identify.

If the query is successful, a response with the requested file and its metadata will be sent back to the

requester. Two properties returned by a successful download request are listed in Table 9.

Table 9: List of properties can be returned by a downloadFile request.

Property Value Type Description

response.header.Content-Disposition String The file name of the downloaded file.

response.content Byte (In ASCII
coding)

The original data of the downloaded file.

Note that the downloaded file will be encoded in ASCII, and the user may need to convert it to a

human-readable format. There are multiple ways to do this. For example, the user can use a python

script to read the data in the response.content and then write it to a plain file in byte mode (e.g. using

the ‘wb’ writing mode).

https://data.ideafast.eu/file/:fileId
https://data.ideafast.eu/file/108be45e-440b-48d9-9730-4319db4e335b

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 19/51

6.5 API Versioning

Every time the DMP evolves to a new version, the existing APIs may need to be updated, and new

APIs may become available to bring new features. API versioning is an effective practice to ensure

such changes do not affect the API users/clients. API versioning permits users/clients to keep on using

an existing API and only migrate or update their applications to the latest API version when they are

ready.

In DMP v0.6.0, the APIs are maintained in a single version. In future versions of the DMP, API

versioning feature will be designed and developed to keep the compatibility of multiple API versions.

The following strategies may be used:

• Maintain multiple versions of APIs at the same time in order to provide support to users or

systems that do not upgrade old APIs to the latest version in time.

• Keep the consistency of versions or APIs that are in use, i.e. to ensure that each version of APIs

in use has both backward and forward compatibility.

7 Analytical Environment

The DMP will provide a secure and user-friendly analytical environment where users can explore and

analyse the datasets hosted on the DMP through a web interface. The analytical environment will

enable users to develop and validate research hypotheses by investigating clinical and device data.

Users of the DMP will be able to use pre-defined data analysis pipelines to run experiments on a

selected cohort. The analytical environment will allow users to write and run their own custom scripts

to perform analysis based on their needs.

For a data privacy and security perspective, the analyses and computation capacities provided by the

analytical environment will allow users to analyse the project datasets without downloading and

keeping a copy of the dataset on their local computers, which further prevents data breaches.

Figure 2: Architecture of the DMP analytical environment. The architecture adapts from the eAE2.

2 Oehmichen, A. (2018). eTRIKS analytical environment: a practical platform for medical big data analysis.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 20/51

The design and implementation of the DMP analytical environment will based on the eTRIKS

Analytical Environment (eAE)3, an open source modular high-performance framework for efficient

analysis of large-scale biomedical data. The eAE was developed by the IMI eTRIKS project4, and has

been used to support several translational research projects. The IDEA-FAST DMP will reuse the eAE

components that were developed by the eTRIKS project, but also develop new features to enhance the

functionality of the DMP analytical environment.

The architecture of the DMP analytical environment is shown in Figure 2. It consists of four layers,

including: 1) the endpoints layer, which interacts with the users via UIs; 2) the storage layers, where

the analytical results are stored; 3) the management layer, which schedules and manages the

computational jobs submitted by the users; and 4) the computational layer, where the computations

are executed.

• Endpoints layer: this layer provides user entry points to the analytical environment. It is

composed of interface services (IDEA-FAST DMP UI and Jupyter UI), the API and control

panel, authentication and logging services. A user’s request will first be verified by the

authentication services, and a verified request will be logged by the logging service for audit

purposes and traceability. A request also needs to be validated by the interface services. The

interface services include: 1) an IDEA-FAST DMP interface that allows users can perform

analysis based on predefined analytical pipelines; and 2) a Jupyter Notebook interface that

allows user to write and run their own custom scripts. A verified and valid request will be saved

in the Storage Layer for the Management Layer to schedule.

• Storage layer: this layer manages the project datasets stored in the DMP as well as the DMP-

specific data (e.g. user credentials and query parameters). As mentioned in Section 4, the DMP

uses the NoSQL database MongoDB to store metadata and the object based S3 storage (MinIO

in DMP v0.6.0) to store the project datasets. The storage layer supports all the other layers by

providing replicated, distributed, and scalable storage resources.

• Management layer: this layer schedules the computation of the analyses onto compute nodes

based on their availability and the type of analyses requested. It is composed of a set of

scheduling and management services which run independently in parallel. Each service

periodically fetches job requests from the storage layer, and for each fetched request, it checks

if a compute note is available to execute it. If the check is successfully, the service will then

send the job request to the Computation Layer for execution.

• Computational layer: this layer provides execution capabilities to the DMP’s analytical

environment. When receiving a job request, the compute service within the layer will fetch the

required data and the analysis codes from the Storage Layer, run the job, generate results, and

save the results and the execution logs in the Storage Layer. Different types of computation

jobs are supported by the DMP’s analytical environment, such as Python 2, Python 3, R, and

Spark.

Pre-defined data analysis pipelines will be implemented in the DMP with inputs from IDEA-FAST

colleagues involved in data modelling and analysis (e.g., WP4 and WP7). Developed models and

algorithms will be transformed and embedded in the DMP’s analytical environment, so the models and

algorithms can be easily reused by the users of the DMP to investigate and validate results. In addition,

meta information of how a machine learning model is trained and tuned, will be properly captured and

managed in the DMP’s analytical environment, which can facilitate the future model validation and

3 Oehmichen, A., Guitton, F., Sun, K., Grizet, J., Heinis, T., & Guo, Y. (2017). eTRIKS analytical environment: a modular high-
performance framework for medical data analysis. In 2017 IEEE International Conference on Big Data (Big Data) (pp. 353-360).
4 https://www.imi.europa.eu/projects-results/project-factsheets/etriks

https://www.imi.europa.eu/projects-results/project-factsheets/etriks

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 21/51

compliance check. Together with the DMP, all analytical pipelines implemented in the analytical

environment will be made available to the research community and maintained on GitHub.

8 Security and Regulatory Compliance

8.1 Introduction

8.1.1 Scope and Goals

The purpose of this Section is to provide:

• The general approach to security design of the DMP within the project.

• A limited set of non-functional security related requirements. These requirements are organized

into categories according to their specific goal (e.g., access control, cryptography, storage, etc.)

and are, as far as possible, expressed in a general form, so as not to impose constraints on the

implementation.

• A clear definition of assumption on the system to be “secured”.

The role of Pluribus One within the project is to contribute to the Data Management Platform's security

by defining and implementing an approach (i.e., both at a high and low level) to manage cyber security

and solve concerns. Pluribus One’s contribution to this deliverable consists of:

• A definition of all the stakeholders and “actors” that are, albeit at different levels, interested in

security-related aspects of the project, and how they are supposed to use this document.

• Providing a list of assumptions and dependencies associated to internal and external elements

of the project. This is important in order to evaluate relevant sources of security issues and to

reduce unexpected risks.

• Providing a definition of features and non-functional requirements for the data management

platform (i.e. and related to its interaction with other systems and “actors” within the IDEA-

FAST whole platform).

8.1.2 Target Audience and How-to-Use

The expected readers of this Section are project managers, developers, testers and, in broader terms,

all the project stakeholders. We assume all these people to be, albeit at a different level, affected by

security related decisions and activities.

This is a list of expected readers:

• Software developers (i.e., developers involved in the implementation of the Data Management

Platform and other components that communicate with it).

• Software Engineers that are involved in the design of the Data Management Platform.

• System Administrators and QA operators that take care of the deployment configuration,

administration of the environment that runs the Data Management Platform.

• Software developers that will be involved in future activities associated with the maintenance

and upgrade of the software.

• Security operators that are involved in the cyber security activities that target the Data

Management Platform.

• Project Managers and other consortium partners.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 22/51

Software developers should read this Section focusing on the list of non-functional requirements. The

requirement’s list is obviously extremely important for developers of the Data Management Platform

but some parts of it are of interest also for developers of other software components that are expected

to communicate with the DMP.

System Administrators of the Data Management Platform underlying system should read this Section

focusing on the requirements associated with their activity. Several security related requirements focus

on the management of the application server, on security policies (e.g. access control, root access,

internal server communication, secrets management, log policies, etc.) and not only on the code itself.

Security operators should read this Section looking for guidelines on what are the important

requirements and consider it as a base to define a detailed list of security checks.

Project managers should read this Section looking for insight in security-related issues, to have a

guideline in the creation of a list of measurable activities that needs to be performed.

8.1.3 General Scope

The purpose of the security-related activities is to help the developers in the implementation of an

information system that is aligned to the standards in terms of security.

This goal will be reached by simultaneously working on two levels:

• Higher level – by providing general guidelines that can be applied on the development process

(e.g. by raising developers’ awareness of security related issues, by integrating security

practises within the software development life cycle, etc.).

• Lower level – by performing traditional security level activities on specific software

components (e.g. penetration testing against a software component, static code analysis, etc.).

8.1.4 Definitions and Acronyms

ASVS - OWASP Application Security Verification Standard, a framework for web-application

security. For more information about OWASP ASVS please refer to https://owasp.org/www-project-

application-security-verification-standard/.

Authenticator - Code that authenticates a password, token, MFA, federated assertion, and so on.

DMP - Data Management Platform.

CDN - Content delivery networks, a provider of externally hosted resources used in a web application.

CIA - Confidentiality, Integrity and Availability.

CSP - Credential Service Provider also called an Identity Provider

CSRF - Cross-Site Request Forgery

DoS - Denial of Service, a type of attack.

LFI - Local File Inclusion, a type of File Inclusion attack against web applications.

MFA - Multi factor authenticator, which includes two or more single factors

OAS - OpenAPI Specification (OAS), a standard, language-agnostic interface to RESTful API.

https://swagger.io/specification/

OTP - One-time password

PII - personally identifiable information (PII)

RFD - reflective file download, a type of attack against web applications.

https://owasp.org/www-project-application-security-verification-standard/
https://owasp.org/www-project-application-security-verification-standard/
https://swagger.io/specification/

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 23/51

RFI - Remote File Inclusion, a type of File Inclusion attack against web applications.

SFA - Single factor authenticators, such as something you know (memorized secrets, passwords,

passphrases, PINs), something you are (biometrics, fingerprint, face scans), or something you have

(OTP tokens, a cryptographic device such as a smart card).

SRI - Subresource Integrity, an integrity check used in the validation of the integrity of externally

hosted resources of a web application.

XSS - Cross-Site Scripting, one of the most common vulnerabilities in web-applications.

Verifier – “An entity that verifies the claimant’s identity by verifying the claimant’s possession and

control of one or two authenticators using an authentication protocol. To do this, the verifier may also

need to validate credentials that link the authenticator(s) to the subscriber’s identifier and check their

status”

8.2 Proposed Approach to Security for the DMP

As previously mentioned, the goal of the security-related activities within WP5 is to contribute to the

development of the data management platform in order to improve its “security”. In order to achieve

this goal, several activities will be performed but one key, underlying principle will always lead our

activities: to strive to be become part of the software development life cycle in order to make security

part of the system with the aim of creating a secure-by-design-software.

Cybersecurity activities can be many and different but among the most important ones there is the

definition of boundaries of what should be done and under what laws, guidelines and regulations the

system is supposed to “live”.

GDPR provides us with a strong set of starting rules and limitations but this is not enough. There are

many advantages and sound reasons for the adoption of a security framework as a set of guidelines

under which to work.

A security framework can be useful especially on these aspects.

• Security improvements. Security frameworks are designed to help organizations to define,

improve and implement their security setting. Security frameworks will help an organization

to better understand, manage, and reduce its cybersecurity risks.

• Prioritize actions. Security frameworks will help the management to determine which

activities are most important, so they help to prioritize investments and maximize the

investments’ impact.

• Measure security effectiveness. Security frameworks provide a common set of practices to

follow, and solid baselines and benchmarks for measuring security effectiveness. This allows

the organization to simplify the creation of reports on improvement. Moreover, baselines and

benchmarks can be used to establish a level of confidence in the applications' security.

• Communication. Security frameworks help communicate inside and outside the organization,

because they provide a common language to address cybersecurity risk management.

The final decision about which security framework to follow, and a definitive list of security

guidelines, has not been reached yet. There has been an agreement on the importance of the adoption

of a security framework and about the definition of a set of guidelines.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 24/51

The following lists presents some key activities that are parts of the proposed approach:

1. Identification of key data that should be protected, secured and managed with extreme care.

2. Identification of possible threats for the data of interest (e.g. corruption, accidental and

deliberate data loss, intelligence gathering, etc.).

3. Identification and definition of security related non-functional requirements (e.g. system access

management requirements, data management requirements, etc.).

4. Continuous identification of potential issue regarding the system’s compliance with standards

and regulations for privacy (i.e. GDPR).

The following list includes some activities that will be performed during the development phase in

terms of security:

1. Definition of the boundaries of the system and creation of a list of possible targets that require

protection.

2. Threat modelling with the purpose of creating a ranked list of possible threats.

3. Definition of a series of guidelines and requirements for the system.

4. Risk assessment and insight in terms of Risk Management Strategy.

8.2.1 Assumptions and Dependencies

Section 8 of the deliverable has been written under some assumptions. It is important to take them into

account:

• The entire IDEA-FAST system will be complex and composed of several “parts” (e.g. custom

software, medical devices, etc.).

• Some of the IDEA-FAST system parts will be developed within the project while others will

be integrated.

• The WP5 activities focuses on a single part of the entire system (i.e. data management platform)

but its security-related requirements are associated to “external” elements such as the sources

of inbound data (i.e. medical devices).

• The Data Management Platform is a web-application that communicates with external systems

via API and also provides a web-based GUI to human users.

• The Data Management Platform has a stand-alone independent data layer with a data storage

used to store all data that is important for business and security purposes.

• The Data Management Platform will store data of several kinds, some of which should be

considered sensible (i.e. medical data, personal data).

• The security analysts will be allowed to access the software platform to execute an agreed set

of tests regarding the security.

• The security analysts will be allowed to test a software platform in a secure way without any

risk of causing loss or damage (e.g. by testing a newly deployed software platform with mock

data) but at the same time by providing sound and valid feedback for the developers.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 25/51

8.3 System Security Features and Requirements

According to the IEEE Standard Glossary of Software Engineering Terminology 5, a “requirement”

can be defined as:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component to

satisfy a contract, standard, specification, or other formally imposed document.

3. A documented representation of a condition or capability as in 1 or 2.

This Section aims at providing a specification of all requirements associated to security and establish

the basis for an agreement on how the software should function in terms of security.

A software requirements specification aims to be a rigorous assessment of requirements before a more

specific design phase actually happens and its goal is to reduce, as far as possible, later redesign.

A software requirement specification is considered extremely useful because it provides an estimate

of production costs and risks 6 and, if appropriately used, it can help to prevent the failure of a software

project 7.

In software engineering requirements are usually divided in two main groups: functional (i.e. what the

system is supposed to do, the “what”) and non-functional (i.e. criteria usable to judge the performance

of the system, the “how”).

In simpler words, we can state that non-functional requirements are other requirements that are not

associated with features of the software but with important characteristics of it. Non-functional

requirements focus on the answers to questions such as: how secure is the system? How usable is it?

How good are the system’s performances?

Non-functional requirements usually are not associated to a specific line of code but are more

“emergent” properties that arise from the entire solution; it is nonetheless possible to pick a certain

design, to follow some guidelines and develop solutions that can implement the “guidelines” provided

by these requirements.

8.3.1 Remarks on Requirements

The most discussed non-functional requirement in software development are:

• Security.

• Performance.

• Availability.

• Extensibility (i.e. how easy it is to upgrade and improve the system).

There are some problems associated with non-functional requirements, starting from how difficult it

is to strictly define them (e.g. what makes a system “secure”?), to measure them (e.g. how fast is

enough to be happy with the performances?) and to compare them.

Taking into account security related requirements we can be sure that security comes with a “price”

(e.g. time, human and financial resources, expertise, hardware, etc.), especially when it comes to write

secure software and we can also be sure that nobody would like to use “non-secure” software but, at

the same time, measuring how secure software is a non-trivial task.

5 IEEE Computer Society (1990). "IEEE Standard Glossary of Software Engineering Terminology". IEEE Standard.
6 Bourque, P.; Fairley, R.E. (2014). "Guide to the Software Engineering Body of Knowledge (SWEBOK)". IEEE Computer Society.
Retrieved 17 July 2014.
7 "Software requirements specification helps to protect IT projects from failure". Retrieved 19 December 2016.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 26/51

8.3.2 Security Requirements Overview

This paragraph focuses on a single non-functional requirement: Security. We define Security as a

quality attribute that heavily interacts with other attributes such as Availability and Robustness.

Security is the sum of all the attributes of an information system which contributes toward ensuring

that all information is processed, stored and transferred while performing three actions:

• Protecting Confidentiality.

• Enforcing Integrity.

• Checking Authenticity.

We can divide the requirements into some sub-categories according to their main “goal” or area of

interest. Each sub-category starts with the code “SR” that stands for Security Requirements.

The following list reports all sub-categories with a brief description:

• SR1 Authentication Verification Requirements – requirements that focus on the

authentication management within the application.

• SR2 Session Management Verification Requirements – requirements that focus on the

session management.

• SR3 Access Control Verification Requirements – requirements that focus on the access

control management within the application and its environment. These requirements are

relevant for system administrators.

• SR4 Validation, Sanitization, Encoding Verification Requirements – requirements that

focus on input validation, sanitization and encoding.

• SR5 Stored Cryptography Verification Requirements – requirements that focus on

cryptography management. These requirements are relevant for system administrators.

• SR6 Error Handling and Logging Verification Requirements – requirements that focus on

error management and logging. These requirements are relevant for system administrators due

to log management.

• SR7 Data Protection Verification Requirements – requirements that focus on data protection

related issues including data storage, data backup, etc. These requirements are relevant for

system administrators due to backup management, cache handling and hardware configuration

(e.g. load balancers).

• SR8 Communications Verification Requirements – these requirements focus on encryption

of the communication. These requirements are relevant for system administrators.

• SR9 Malicious Code Verification Requirements – these requirements focus on security

associated with third party libraries, middleware and the possibility of malicious code being

inserted in the code base.

• SR10 File and Resource Verification Requirements – these requirements focus on security

issues associated with file management. These requirements are relevant for system

administrators.

• SR11 API and Web Service Verification Requirements – These requirements focus on

security issues associated with the communication with external components.

• SR12 Configuration Verification Requirements – These requirements focus on security

issues associated with the configuration of the application and of the application environment

(i.e., the application server, runtime environments). These requirements are relevant for system

administrators.

For a complete list of all non-functional security related requirements, please refer to Appendix D.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 27/51

8.3.3 Security Requirements Complete List

This Section presents a complete list of security non-functional requirements divided into categories

according to their purpose. The general structure of these requirements is strongly based on OWASP

Application Security Verification Standard (ASVS), a framework for web-application security (for

more information about OWASP ASVS please refer to https://owasp.org/www-project-application-

security-verification-standard/).

As previously stated, all requirements are divided into macro categories and, in certain cases, a second

level of sub-categories is used too. For each category of requirements, there is a table with the

following columns:

• #RID – a unique identifier for the requirements for traceability purpose.

• Description – a brief description of the requirement. A more complete and precise description

will be provided, where required, during the following phases of the development.

• OWASP – a series of identifiers of OWASP ASVS “controls”. The numbering is based on

ASVS ver. 4.0.

• NIST – a series of identifiers of NIST 800-63 standard that are associated to the requirement.

9 Conclusions

This document describes the specifications of the IDEA-FAST DMP. It is a working document and

will be updated whenever any changes arise.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 28/51

Appendix A – User Guide to DMP V0.6.0

This section provides guidelines for a user to: 1) register an account to access the IDEA-FAST DMP

v0.6.0; 2) upload/download data to/from the IDEA-FAST feasibility study dataset.

Register a new account

Step 1: Go to https://data.ideafast.eu/. Click “Please register” on the Welcome page:

Figure A.1: DMP User Registration.

Step 2: Fill in your registration information: click “Create” and you will see the following page if the

registration is successful.

Step 3: Check your email and get your time-based one-time password (TOTP). You will receive an

email from <no-reply@ideafast.eu> with a QR code for obtaining the TOTPs.

Figure A.2: Example of the account verification email.

https://data.ideafast.eu/

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 29/51

Access the platform

Step 1: Go to https://data.ideafast.eu/. Enter your username and password.

Step 2: You will need a time-based one-time password (TOTP) to access the DMP. To get your TOTP,

please scan the QR code (or enter the token) provided in the registration email using an Authentication

Application (e.g., Google Authentication App or Microsoft Authenticator App) via your smartphone.

Instructions of how to get your TOTP via Google Authentication App:

• Step 2.1: Install the App on your smartphone and open the App.

• Step 2.2: Choose “Scan barcode” and scan the QR code provided in the email. Or you can

choose “Manual entry” and enter the token.

• Step 2.3: A 6-digit TOTP will be generated by the App.

Step 3: Enter the 6-digit TOTP in the “One-Time Passcode” field on the Welcome Page and then click

“Login”.

Access the IDEA-FAST Feasibility Study Dataset

User accounts will be reviewed by the Admin team of the IDEA-FAST DMP. Your permission to

access the Feasibility Study Dataset will be assigned by the Admin team.

Step 1: After login you will see the Datasets page. Click the “IDEA-FAST FEASIBILITY STUDY”

dataset. You will then see a list of existing files under this dataset. Please contact the WP5 ICL team

you have any problems on accessing the dataset.

Figure A.3: DMP data file exploration.

Upload Data to the IDEA-FAST Feasibility Study Dataset

Step 1: On the IDEA-FAST FEASIBILITY STUDY dataset page, click “Select files” under “Upload

files” section.

https://data.ideafast.eu/
https://play.google.com/store/apps/details?id=com.google.android.apps.authenticator2&hl=en
https://www.microsoft.com/en-us/account/authenticator#getapp

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 30/51

Step 2: Choose the data files from your local machine and click “OK”. If the name of a file is in the

following form, the platform will extract metadata automatically:

XAAAAAA-DDDBBBBBB-SSSSSSSS-EEEEEEEE.EXT

where “XAAAAAA” is the IDEA-FAST FS participant ID, “DDDBBBBBBBB” is the IDEA-FAST

Device ID, “SSSSSSSS” is the record start date, and “EEEEEEEE” is the record end date. For

example: IAAAAAA-MMM3PQCN-20200702-20200703.ZIP

The platform will automatically check the file name and extract the Participant ID, Site, Device ID,

Device Type and Recording Period information. If the filename is not in the standard format, you will

need to enter the valid Participant ID, Device ID and Recording Period before uploading the data.

Figure A.4: Upload data file to the DMP.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 31/51

Step 3: Click the “Upload (N ready of M)” to upload the file to the platform. A pop-up notification of

“Upload successful” will appear at the top-right corner if the upload is successful (Figure A.4).

Download Data from the IDEA-FAST Feasibility Study Dataset

Step 1: Go to https://data.ideafast.eu/ and login.

Step 2: Click the “IDEA-FAST FEASIBILITY STUDY” dataset. You will then see a list of existing

files under this dataset.

Step 3: Click “Download” to start the download process.

https://data.ideafast.eu/

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 32/51

Appendix B – DMP Data Schema

This section describes the data schema that is currently supported by the DMP.

Data Value Types

The DMP supports different data types. In the data scheme, the data type needs to be specified for each

data field. Currently the following types are supported:

• ‘c’: categorical data, which represents characteristics, e.g. gender and ethnicity;

• ‘d’: decimal data, which represents fractional numbers, e.g. temperature and weight;

• ‘i’: integer data, which represents integer values, e.g. number of siblings;

• ‘b’: binary data, which represents data that has only two possible states, normally labelled as

True and False;

• ‘t’: undefined data, which represents free text in string format.

Data Field/Variable Definition

Data fields and associated attributes need to be defined before any data to be uploaded to the DMP. In

DMP v0.6.0, the following attributes are used to describe a data field: 1) fieldID; 2) fieldName; 3)

valueType; 4) possibleValues; 5) unit; 6) path; 7) numOfTimePoints; 8) numOfMeasurements; 9)

startingTimePoint; 10) startingMeasurement; and 11) notes. Details of these attributes are shown in

Table B.1.

Table B.1: DMP data field attribute descriptions.

Attribute Description
Compulsory/

Optional
Example

fieldID ID of the variable Compulsory 42

fieldName Name of the variable Compulsory weight

valueType Data type of the variable Compulsory i

possibleValues
Possible values of the

variable

Optional for all

value types except

categorical

[30, 200]

unit Unit of the variable Optional kg

path Path of the variable Compulsory

Physical measures >

Anthropometry > Body

Measurements

numOfTimePoints Number of time points Compulsory 7

numOfMeasurements Number of measurements Compulsory 4

startingTimePoint Starting time point Compulsory 3

startingMeasurement
Starting index of the

measurement
Compulsory 3

notes
Notes or addition

comments
Optional The weight of a subject

Note that the ‘possibleValues’ attribute is optional for decimal, integer, binary and undefined value

types but compulsory for categorical variables. Data field definitions need to be prepared in tab-

delimited CSV format, with the list of all data field attributes as the header.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 33/51

Source Data Files

A source data file contains the data to be uploaded to the DMP. The header of a source data file should

contain the list of all data fields/variables, starting from the variable ‘Eid’, which represents the subject

ID. The ‘Eid’ variable is compulsory for all source data files and cannot be omitted or changed.

Apart from the ‘Eid’ variable, all other data fields in the source data file should use the following

format:

{fieldId}@{timepoint}.{measurement}:{datatype}

The {datatype} part is optional, and when unspecified the DMP will set the variable to ‘c’ categorical

data type by default. For example, “1@0.0” and “2@0.1:c” are both valid data fields in a source data

file.

A source data file can either be in CSV format or JSON format. When using CSV format, the file starts

with header listing all data fields, and each following line of the CSV file corresponds to the data of

one subject. Similarly, when using JSON format, the file starts with an array with all data fields, and

each following array in the JSON file corresponds to the data of one subject. The DMP will

automatedly check the source data file format and raise any errors or inconsistency in the file during

the data upload process.

Tables B.2 – B.4 provide an example of how to convert clinical data records (Table B.2) to a data field

definition file (Table B.3) and a source data file (Table B.4) that are in the format supported by the

DMP.

Table B.2: A dummy example of clinical data for two subjects. There are two timepoints: baseline visit and

longitudinal visit. Data of four variables (age, gender, weight and heart rate) are recorded.

Subject ID Visit Variable Value Unit

A001 Baseline Visit Age 40

A001 Baseline Visit Gender Female

A001 Baseline Visit Weight 75 kg

A001 Baseline Visit Heart Rate 93 bpm

A001 Longitudinal Visit Heart Rate 95 bmp

A002 Baseline Visit Age 42

A002 Baseline Visit Gender Male

A002 Baseline Visit Heart Rate 76 bpm

A002 Longitudinal Visit Heart Rate 73 bmp

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 34/51

Table B.3: The data field definition for the data shown in Table B.2.

fi
e
ld

Id

fi
e
ld

N
a
m

e

v
a
lu

e
T

y
p

e

P
o

s
s
ib

le

V
a
lu

e
s

u
n

it

p
a
th

n
u

m
O

f

T
im

e
P

o
in

ts

n
u

m
O

f

M
e
a
s
u

re
m

e
n

ts

S
ta

rt
in

g

T
im

e
P

o
in

t

S
ta

rt
in

g

M
e
a
s
u

re
m

e
n

t

n
o

te
s

1 Age i Demographic 1 1 1 1 Age

2 Gender c
Male,

Female
 Demographic 1 1 1 1 Gender

3 Weight d kg
Body

Measurement
1 1 1 1 Weight in Kg

4 HeartRate i bpm Vital Signs 2 1 1 1
Heart Rate,

1:baseline,2:longitudinal

Table B.4: The source data file in CSV (top) and JSON (bottom) formats for the data shown in Table 8.2.

Eid 1@1.1:i 2@1.1:c 3@1.1:d 4@1.1:i 4@2.1:i

A001 40 Female 75 93 95

A002 42 Male 76 73

[

[“Eid”, “1@1.1:i”, “2@1.1:c”, “3@1.1:d”, “4@1.1:i”, “4@2.1:i”],

 [“A001”, “40”, “Female”, “75”, “93”, “95”],

 [“A002”, “42”, “Male”, “”, “76”, “73”]

]

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 35/51

Appendix C – GraphQL Requests for User Authentication and
Data Transfer

This section provides examples of GraphQL requests for a client/user to:

1. Get authenticated (Code C.1);

2. Obtain the list of files (Code C.2);

3. Upload data to the DMP via the DMP’s APIs (Code C.3).

Code C.1: GraphQL query for user authentication.

1. fragment ALL_FOR_USER on User {
2. id
3. username
4. type
5. firstname
6. lastname
7. email
8. organisation
9. description
10. access {
11. id
12. projects {
13. id
14. name
15. studyId
16. }
17. studies {
18. id
19. name
20. }
21. },
22. createdAt,
23. expiredAt
24. }
25.
26. mutation login($username: String!, $password: String!, $totp: String!) {
27. login(username: $username, password: $password, totp: $totp) {
28. ...ALL_FOR_USER
29. }
30. }

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 36/51

Code C.2: GraphQL query for obtaining a list of files.

1. fragment ALL_FOR_JOB on Job {
2. id
3. studyId
4. projectId
5. jobType
6. requester
7. requestTime
8. receivedFiles
9. status
10. error
11. cancelled
12. cancelledTime
13. data
14. }
15.
16. query getStudy($studyId: String!) {
17. getStudy(studyId: $studyId) {
18. id
19. name
20. createdBy
21. jobs {
22. ...ALL_FOR_JOB
23. }
24. projects {
25. id
26. studyId
27. name
28. }
29. roles {
30. id
31. name
32. permissions
33. projectId
34. studyId
35. users {
36. id
37. firstname
38. lastname
39. organisation
40. username
41. }
42. }
43. files {
44. id
45. fileName
46. studyId
47. projectId
48. fileSize
49. description
50. uploadTime
51. uploadedBy
52. }
53. numOfSubjects
54. currentDataVersion
55. dataVersions {
56. id
57. version
58. tag
59. uploadDate
60. jobId
61. extractedFrom
62. fileSize
63. contentId
64. fieldTrees
65. }
66. }
67. }

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 37/51

Code C.3: GraphQL query for data upload.

1. mutation uploadFile($studyId: String!, $file: Upload!, $description: String!, $fileLength: Int) {
2. uploadFile(studyId: $studyId, description: $description, file: $file, fileLength: $fileLength) {
3. id
4. fileName
5. studyId
6. projectId
7. fileSize
8. description
9. uploadedBy
10. }

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 38/51

Appendix D – Security Requirement Descriptions

SR1 Authentication Verification Requirements

SR1.1 Password Security Requirements

Table D.1: Authentication Requirements – Password Security (SR1.1).

#RID Description OWASP NIST

SR1.1 Verify that user set passwords are compliant to a set of known

and agreed regulations (e.g. specific regulations can include a

minimum length in characters, a set of allowed characters, etc.).

2.1.1, 2.1.2, 2.1.3,

2.1.4

5.1.1.2

SR1.2 Verify that password change functionality exists. 2.1.5, 2.1.6, 2.1.7, 5.1.1.2

SR1.3 The application password creation and change procedures

should include some key features such as the availability of the

“paste functionality” and the possibility to use external password

managers.

2.1.8, 2.1.9, 2.1.10,

2.1.11, 2.1.12

5.1.1.2

SR1.2 General Authenticator Requirements & SR1.3 Authenticator Lifecycle Requirements

Table D.2: Authentication Requirements – General Authenticator (SR1.2), Authenticator Lifecycle (SR1.3).

#RID Description OWASP NIST

SR1.4 The system must have an anti-automatic control in order to

mitigate the risk of breached credential testing, brute force

lockout attacks and other automatic threats. There are several

possible solutions such as CAPTCHA, rate limiting, etc.

2.2.1 5.2.2,

5.1.1.2,

5.1.4.2,

5.1.5.2

SR1.5 Within the application, the use of weak authenticators (such

as SMS and email) should be as limited as possible to

operations that are not critical. Verify that as far as technically

feasible stronger methods are offered before weak methods,

that users are aware of risks and that measures are in place

to limit the risks of account compromise.

2.2.2 5.2.10

SR1.6 The application must send notifications to users in a secure

form after important updates to authentication details (e.g.

credential resets, email or address changes, etc.).

2.2.3 -

SR1.7 Within the application, user received notification should be

based on push notification technology or if SMS/email based

notifications are used then no sensitive information should be

disclosed within the notification.

2.2.3 -

SR1.8 Within the application, the initial system generated passwords

and activations codes SHOULD be securely randomly

generated and expire after a short period of time.

2.3.1 5.1.1.2 /

A3

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 39/51

SR1.4 Credential Storage Requirements & SR1.5 Credential Recovery Requirements

Table D.3: Authentication Requirements – Credential Storage (SR1.4), Credential Recovery (SR1.5).

#RID Description OWASP NIST

SR1.9 The password storage must be resistant to offline attacks.

Passwords SHALL be salted and hashed solely by using

approved one-way key password hashing functions.

2.4.1 5.1.1.2

SR1.10 Within the application, the salt used as input for the

password hashing functions should be at least 32 bits in

length and arbitrarily chosen to minimize salt collision.

2.4.2 5.1.1.2

SR1.11 Within the application, system generated initial activation or

recovery secret must not be sent in clear text to the user.

2.5.1 5.1.1.2

SR1.12 During the password credential recovery process the

current password must not be revealed in any way.

2.5.3 5.1.1.2

SR1.13 Password hints (i.e. “secret questions) should not be

present.

2.5.2 5.1.1.2

SR1.14 Shared or default accounts (e.g. “admin”, “root”, etc..)

should not be present.

2.5.4 5.1.1.2

/A.3

SR1.6 Service Authentication Requirements

Table D.4: Authentication Requirements – Service Authentication (SR1.6).

#RID Description OWASP NIST

SR1.15 Integration related secrets must not be based on fixed

passwords such as API keys or shared privileged accounts.

2.10.1 5.1.1.1

SR1.16 In case passwords are required then the credential must not be

a default account.

2.10.2 5.1.1.1

SR1.17 Passwords should be stored with sufficient protection to prevent

offline recovery attacks, including local system access.

2.10.3 5.1.1.1

SR1.18 Passwords, integrations with databases, integration with third-

party systems, API keys and internal secrets must not be

included in source code and never be stored within the source

code repositories. The used storage should resist offline attacks.

2.10.4 -

SR2 Session Management Verification Requirements

Any web-based application or stateful API contains a core component that handles session

management in order to maintain the state for a user or device that is interacting with the system itself.

There are two high level requirements that are fundamental for the system:

• Sessions must be unique to each individual user or device and cannot be shared or “guessed”.

• Sessions must be invalidated when no longer required and timed out after periods of inactivity.

It should be noted that the most common frameworks for the web-application development already

propose several software solutions for a safe session management.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 40/51

SR2.1 Fundamental Session Management Requirements

Table D.5: Session Management Verification Requirements - Fundamental (SR2.1).

#RID Description OWASP NIST

SR2.1 The application must never reveal session’s tokens in URL

parameters or error messages.

3.1.1 -

SR2.2 The application must generate a new session token on

user/device authentication.

3.1.2 7.1

SR2.3 The application must store session’s tokens in the web

browser only using secure methods (i.e. using secured

cookies or by leveraging HTML 5 session storage).

3.2.3 7.1

SR2.4 The application must leverage approved cryptographic

algorithms in order to generate session’s tokens.

3.2.4 7.1

SR2.5 The application must invalidate session’s tokens at logout

and after expiration (i.e. using the back button does not

resume an authenticated session).

3.3.1 7.1

SR2.6 If cookie-based session is used then the application should

have all the cookie’s required associated attributes set (e.g.

‘Secure’, ‘HttpOnly’).

3.4.1 / 3.4.5 7.1.1

SR2.7 The application must be protected against Session

Management Exploits by ensuring a valid login session or by

requiring re-authentication before allowing any sensitive

transaction or account modification.

3.7.1 -

SR3 Access Control Verification Requirements

Allowing access to resources only to those permitted to use them is the core tenet of authorization.

There are some high-level requirements that are fundamental for the system:

• All persons accessing resources hold valid credentials to do so.

• There is a well-defined association between Users and Roles/Privileges.

• Role and permission related metadata is protected from tampering.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 41/51

SR3.1 General Access Control Design & SR3.2 Operation Level Access Control & SR3.3 Other

Access Control Considerations.

Table D.6: Access Control Verification Requirements - General Access Control Design (SR3.1), Operation

Level Access Control (SR3.2), Other Access Control Considerations (SR3.3).

#RID Description OWASP NIST

SR3.1 The application should enforce access control rules on a trusted

service layer. This is especially important if client-side access

control is present and could be bypassed.

4.1.1 -

SR3.2 The application must verify that, unless specifically authorized,

end users cannot manipulate information used by the access

control. This pieces of information include: user attributes, data

attributes, policy information.

4.1.2 -

SR3.3 The application should enforce the “principle of least privilege”:

users should only be able to access functions, data files,

services and, in general, resources for which they possess

specific authorization. Note: this implies protection against

elevation of privilege and spoofing.

4.1.3 -

SR3.4 The application should enforcement the “principle of deny by

default”: new users or roles start with minimal or no permission

and do not receive access to new features until access is

explicitly assigned.

4.1.4 -

SR3.5 The application’s access controls must fail securely when an

exception occurs.

4.1.5 -

SR3.6 Within the application, sensitive data and API must be protected

against direct object attacks that target creation, reading,

updating and deletion of records. These types of attack include

deletion of all records or tampering of existing data.

4.2.1 -

SR3.7 The application should enforce a strong anti-CSRF and anti-

automation mechanism in order to protect authentication.

4.2.2 -

SR3.8 Within the application, directory browsing must be disabled

unless deliberately desired. The application should not allow

discovery or disclosure of files or directory metadata (e.g.

Thumbs.db, .DS_Store, .git or .svn folders).

4.3.2 -

SR4 Validation, Sanitization, Encoding Verification Requirements

In web-application security the most common weakness is the failure to properly validate input to the

system itself. It does not matter if the input is coming from the client or from the environment, if there

is not a prior encoding then there is a risk and this leads to almost all of the significant vulnerabilities

in web-applications: Cross-Site Scripting (XSS), SQL Injection, interpreter injection, etc.

There are some high-level requirements that are fundamental for the system:

• Input validation and output encoding architecture have an agreed pipeline to prevent injection

attacks.

• Input data is strongly typed, validated (e.g., checked for range and length) or at least sanitized

and filtered.

• Output data is encoded or escaped as close to the interpreter as possible.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 42/51

Output encoding is more important than ever and, since providing robust input validation is often

difficult, the use of safe API (e.g., parameterized queries, auto-escaping templates, etc) is critical to

the security of the application.

SR4.1 Input Validation Requirements

Implementing a proper input validation control can eliminate more than 90% of all injection attacks.

This can be achieved in several ways: strong data typing, positive whitelisting, length and range

checks, etc.

A secure input validation is built during application architecture design, code development, and testing

development.

Table D.7: Validation, Sanitization, Encoding Verification Requirements - Input Validation (SR4.1).

#RID Description OWASP NIST

SR4.1 The application should be protected against HTTP parameter

pollution attacks.

5.1.1 -

SR4.2 The application, or the framework on which it is based, should

include a protection against mass parameter assignment or unsafe

parameter assignment (e.g. marking a field as private or similar).

5.1.2 -

SR4.3 The application should verify that all inputs (e.g., REST requests,

HTML form fields, URL parameters, HTTP Headers, etc.) are

validated by using positive validation (i.e. whitelisting).

5.1.3 -

SR4.4 Within the application is mandatory that structured data is strongly

typed and validated against a defined schema. Perform stronger

checks if possible (e.g. allowed characters, length, patterns, etc.).

5.1.4 -

SR4.5 The application features of URL redirection and URL forwarding

should use a whitelist of allowed destinations. As a viable

alternative, a warning can be shown to users in case of redirection

to potentially untrusted content.

5.1.5 -

SR4.2 Sanitization and Sandboxing Requirements

Table D.8: Validation, Sanitization, Encoding Verification Requirements - Sanitization and Sandboxing

(SR4.2).

#RID Description OWASP NIST

SR4.6 The application must sanitize received inputs. Great care should

be applied to input such as HTML, scriptable content, expression

template content (e.g. markdown, css, BBCode, html, etc.).

5.2.1 / 5.2.3,

5.2.5 / 5.2.8

-

SR4.7 The application must not use any eval() or other dynamic code

execution features. In case there are no alternatives, any user

input included needs to be sanitized or sandboxed before being

executed.

5.2.4 -

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 43/51

SR4.3 Output encoding and Injection Prevention Requirements

When generating the output is important to encode it as close as possible to the expected interpreter.

This is a critical issue and failing it to do it will result in an insecure, injectable and unsafe application.

Please take into account that using parameterized queries and escaping SQL is rarely sufficient because

several elements of a query cannot be escaped (e.g., table and column name).

Please also take into account that the SVG format should be handle with extreme care since ECMA

scripts can be included inside it. SVG can be a vector for XSS attacks and as such SVG upload should

be disabled unless required. In case SVG upload is required some solutions must be implemented to

manage it safely.

Table D.9: Validation, Sanitization, Encoding Verification Requirements - Output encoding and Injection

Prevention (SR4.3).

#RID Description OWASP NIST

SR4.8 The application’s output encoding should be relevant for the

interpreter and a context should be provided (e.g. use specific

encoders for HTML values, HTML attributes, URL

parameters, etc.).

5.3.1 -

SR4.9 The application’s output encoding should preserve user’s

chosen character set and locale.

5.3.2 -

SR4.10 The application must make us of data selection and database

queries that are based on parameterized queries, ORM, entity

frameworks in order to prevent database injection attacks.

5.3.4 -

SR4.11 The application must be protected versus attacks such as

XSS (i.e. reflected, stored, DOM based), SQL Injection, JS

and JSON Injection (remove JS include, CSP bypass, eval

attacks), LDAP injection, OS command injection, Local File

Inclusion (LFI) and Remote File Inclusion (RFI), XPath

injection and XML injection.

5.3.3, 5.3.5 /

5.3.10

-

SR4.5 Deserialization Prevention Requirements

Table D.10: Validation, Sanitization, Encoding Verification Requirements - Deserialization Prevention

(SR4.4).

#RID Description OWASP NIST

SR4.12 The application should correctly restrict XML parsers and force

them to use a restrictive configuration in order to ensure that

unsafe features (e.g. external entities resolution) are disabled.

5.5.2 -

SR4.13 Both the application and used third party libraries should avoid

the deserialization of untrusted data or do it in a secure and

“protected” way (e.g. JSON, XML and YAML parsers).

5.5.3 -

SR4.14 Verify that the application parses JSON using JSON.parse and

do not uses eval(). This must be checked both for browser

parsing and JavaScript based backends.

5.5.4 -

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 44/51

SR5 Stored Cryptography Verification Requirements

There are some high-level requirements that are fundamental for the system:

• All software modules that manage cryptography must fail in a secure manner and errors must

be handled correctly.

• Random number generation must be managed with a suitable generator.

• Key access must be managed in a secure way.

SR5.1 Data Classification & SR5.2 Algorithms.

Table D.11: Stored Cryptography Verification Requirements – Data Classification (SR5.1), Algorithms

(SR5.2).

#RID Description OWASP NIST

SR5.1 Regulated private data must be stored in an encrypted format

while at rest. This include personally identifiable information

(PII), sensitive personal information, data subject to EU’s GDPR.

6.1.1 -

SR5.2 Regulated health data must be stored encrypted while at rest.

This include medical records, medical device details and de-

anonymized research records.

6.1.2 -

SR5.3 All cryptographic modules should fail securely and should be

chosen and configured according to industry/government proven

guidelines. This include the use of approved cryptographic

algorithms, random number generation, modes and libraries

over custom made solutions.

6.2.1, 6.2.2,

6.2.3, 6.3.1

-

SR5.4 All configuration related to “cryptography” (e.g., hashing and

encryption algorithms, cyphers, etc.) should be easily and

quickly reconfigured and upgraded at any time to protect against

cryptographic breaks.

6.2.4 -

SR5.5 Verify that a secrets management solution (e.g. a key vault) is

used to securely manage secrets (i.e. create, store, control

access, destroy). This include the use of a similar approach for

key material that should not be exposed to the application.

6.4.1, 6.4.2

SR6 Error Handling and Logging Verification Requirements

Error handling and logging is of primary importance when it comes to provide useful information for

the users, administrators, quality assurance (QA) and incident response teams. High quality logs, low

in “noise” but high in “signal”, will often contains sensitive data and as a consequence they need to be

protected as per local privacy laws or directives.

There are some high-level requirements that are fundamental for the system:

• Do not collect or log sensitive information unless specifically required.

• Ensure that all logged information is handled in a secure way and protected as per its data

classification.

• Ensure that all logs are not store forever and clearly define a log lifetime that needs to be as

short as possible.

• Do not disclose unnecessary information when the application has an internal error.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 45/51

SR6.1 Log Content Requirements & SR6.2 Log Protection Requirements

Logging sensitive information can be a source of problems, a danger and increase the complexity of

the system. Every log containing sensitive information should be considered sensitive itself and, as

such, it needs to be encrypted and become subject to retention policies and must be disclosed in security

audits. It is important to ensure that only the necessary information is kept in logs and sensitive or

personally identifiable information are never stored.

Logs that can be trivially modified or deleted are useless for investigations and prosecutions and

disclosure of logs can expose inner details about application and stored data. Logs should be handled

and managed with care.

Table D.12: Error Handling and Logging Verification Requirements – Log Content Requirements (SR6.1),

Log Protection Requirements (SR6.2).

#RID Description OWASP NIST

SR6.1 The application must not log credentials and session’s tokens must

not be stored unless in a hashed form.

7.1.1 -

SR6.2 The application must not log sensitive data as defined under

relevant privacy laws and security policies.

7.1.2 -

SR6.3 The application must log security relevant events (i.e. successful

and failed authentication, access control failures, deserialization

failures, input validation failures).

7.1.3 -

SR6.4 The application’s logs must include the necessary information that

would allow for a detailed investigation of the timeline when an

event happens.

7.1.4 -

SR6.5 The application’s logs must be protected from unauthorized access

and modification.

7.3.3 -

SR6.6 The log’s time source should be synchronized to the correct time

and time zone. It is strongly suggested to log only in UTC if systems

are global in order to assist in post-incident forensic analysis.

7.3.4 -

SR6.3 Error Handling

Table D.13: Error Handling and Logging Verification Requirements – Error Handling (SR6.3).

#RID Description OWASP NIST

SR6.7 The application must return/show a generic message when an

unexpected or security sensitive error occurs. If required, a unique

ID can be provided in order to support during the investigation.

7.4.1 -

SR6.8 The application should use exception handling (i.e. or a

functionally equivalent software solution) in all the codebase to

account for expected and unexpected error conditions.

7.4.2 -

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 46/51

SR7 Data Protection Verification Requirements

Data protection focuses on three key elements: Confidentiality, Integrity and Availability (CIA).

There are some high-level requirements that are fundamental for the system:

• Confidentiality – data should be protected from unauthorized observation or disclosure both in

transit and when stored.

• Integrity – data should be protected from being maliciously created, altered or deleted by

unauthorized parties.

• Availability – data should be available to authorized users as required.

SR7.1 General Data Protection

Table D.14: Data Protection Verification Requirements – General Data Protection (SR7.1).

#RID Description OWASP NIST

SR7.1 The application must protect sensitive data from being cached

in server components (e.g. load balancers, application caches,

etc.) and all cached sensitive data must be protected from

unauthorized access or being purged/invalidated after being

accessed by an authorized party.

8.1.1, 8.1.2 -

SR7.2 Regular backups of important data should be performed and

stored securely to prevent data theft and data corruption.

8.1.5, 8.1.6 -

SR7.2 Client-side Data Protection

Table D.15: Data Protection Verification Requirements – Client-side Data Protection (SR7.2).

#RID Description OWASP NIST

SR7.3 The application must set sufficient anti-caching headers to

prevent browsers from caching sensitive data.

8.2.1

SR7.4 The application should not store in client-side storage (e.g.

HTML5 local storage) any piece of sensitive data or PII

8.2.2

SR7.5 The application must clear authenticated data from client storage

(e.g. the browser’s DOM) after the session is terminated.

8.2.3

SR7.3 Sensitive Private Data

This Section focuses on the protection of sensitive data from being created, read, update or deleted in

discreet quantities or in bulk quantities.

These requirements are strictly linked to those regarding Access Control and to privacy and GDPR

compliance. Privacy regulations and laws (e.g. GDPR) deeply affect in a direct way how software

applications must approach the problem of sensitive and personal information storage, use and

transmission.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 47/51

Table D.16: Data Protection Verification Requirements – Sensitive Private Data (SR7.3).

#RID Description OWASP NIST

SR7.6 The application must handle communication of sensitive data in

the HTTP message body or header while query string parameters

from any HTTP verbs must not contain sensitive data.

8.3.1 -

SR7.7 The application must provide users with a clear explanation

regarding data collection and use, provide an opt-in consent for

the use of any data and allow users to remove or export their data

on demand.

8.3.2,

8.3.3

-

SR7.8 All sensitive data created and processed by the application must

have been identified and there must be a policy in place regarding

how to deal with sensitive data.

8.3.4 -

SR8 Communications Verification Requirements

There are some high-level requirements that are fundamental for the system:

• Strong encryption (e.g. TLS) is always used, regardless of the sensitivity of the data being

transmitted.

• The most recent or leading configuration advice is used in regards of preferred algorithms.

• Deprecated and insecure algorithms are disabled, weak algorithms are used only as last resort.

SR8.1 Communication Security Requirements & SR8.2 Server Communications Security

Requirements

Table D.17: Communications Verification Requirements – Communication Security (SR8.1), Server

Communications Security (SR8.2)

#RID Description OWASP NIST

SR8.1 The application must use secure TLS for all the communication with

the client and never fall back to insecure or unencrypted protocols.

9.1.1 -

SR8.2 The application must disable all old versions of SSL and TLS such as

SSLv2, SSLv3, TLS 1.0 and TLS 1.1

9.1.3

SR8.3 The application must use trusted TLS certificates for the

communication to and from the server. If internally generated or self-

signed certificates are used, the application server must be configured

to only trust specific internal CAs and self-signed certificates.

9.2.1

SR8.4 The application must use secure TLS for all the inbound and outbound

connections (e.g. ports managements, monitoring, authentication, API,

database connection, etc.).

9.2.2

SR9 Malicious Code Verification Requirements

Every complex software usually leverages several third-party libraries, and this can introduce

weaknesses into the system.

Great care should be taken while selecting third party libraries and software components. Once an

application is deployed, malicious code can still often be inserted, and this practically can turn every

third-party library into a piece of malicious code. The application needs to be protected from common

attacks: unsigned code execution from untrusted sources, sub-domain takeover, etc.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 48/51

SR9.1 Deployed Application Integrity Controls

Table D.18: Malicious Code Verification Requirements – Deployed Application Integrity Controls (SR9.1).

#RID Description OWASP NIST

SR9.1 The application’s dependencies and runtime environment must

be updated only with software obtained over secure channels

and digitally signed. The update code must validate the digital

signature before installing or executing the update.

10.3.1 -

SR9.2 The application must include an integrity protection (e.g. code

signing) and must not load or execute code from untrusted

sources (e.g. loading includes, modules, plugins, etc).

10.3.2 -

SR10 File and Resource Verification Requirements

There are some high-level requirements that are fundamental for the system:

• Untrusted file data must be handled in a secure manner.

• Untrusted file data obtained from untrusted sources must be stored outside the web root and

with limited permissions.

SR10.1 File Upload Requirements & SR10.2 File execution Requirements & SR10.3 File Storage

Requirements & SR10.4 File Download Requirements & SR10.5 SSRF Protection Requirements

Table D.19: File and Resource Verification Requirements – File Upload (SR10.1), File execution (SR10.2),

File Storage (SR10.3), File Download (SR10.4), SSRF Protection (SR10.5).

#RID Description OWASP NIST

SR10.1 The application must not accept large files that could fill up the

storage space and/or cause DoS attacks.

12.1.1 -

SR10.2 The application must validate or ignore user-submitted filename

metadata to prevent and block several threats: path traversal, local

and remote file inclusion (LFI, RFI), reflective file download (RFD).

12.3.1 /

12.3.4

-

SR10.3 The application must store files obtained from untrusted sources

outside of the web root, with limited permissions and, preferably,

with a strong validation.

12.4.1 -

SR10.4 The application must serve only files with specific file extensions to

prevent unintentional information and source code leakage (e.g.

no backup files .bak, or compressed files should be served).

12.5.1 -

SR10.5 The application web server’s configuration must include a whitelist

of resources or systems to which the server can send requests or

load data/files from.

12.6.1 -

SR11 API and Web Service Verification Requirements

The application developed within WP5 is expected to communicate with other external components

developed (i.e., developed within the IDEA-FAST project and/or already existent). It is assumed that

all verified applications that can communicate with the DMP will do it solely by using a trusted service

layer APIs (e.g. JSON, XML, GraphQL).

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 49/51

There are some high-level requirements that are fundamental for the system in regards to this

communication:

• There must be an adequate authentication, session management and authorization of all web

services that are allowed to communicate with the DMP.

• There must be an input validation for all parameters that transit from a lower to a higher trust

level.

• Effective security controls for all API types (i.e., cloud data transfer and Serverless API also

require security controls).

It should be noted that the requirements included in this Section should be considered combined with

other previously written requirements.

Some additional notes are useful, and important, in regards of JSON schema validation. There are no

current universally accepted standards regarding JSON schema validation albeit some projects, such

as OpenAPI Specification (OAS, please refer to https://swagger.io/specification/), are seeing a constantly

growing recognition.

A natural consequence of a lack of universally accepted standard is a lack of mature software solutions

to enforce schema validation. When considering using JSON schema validation, which is best practice

for SOAP web services, consider these additional strategies in combination with standard JSON

schema validation:

• Parse validation – check the JSON object for missing or extra elements.

• Standard Input validation – check the JSON object using standard approaches as data type

check, data format check, length, etc.

• Formal Schema validation – check the JSON object against an expected schema.

The approach used for schema validation should be adapted to the software architecture and is expected

to be different for validation of external inbound data (i.e., incoming JSON that are submitted from

external sources) and for internal data transfer (i.e., data that is generated due to the GraphQL layer).

https://swagger.io/specification/

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 50/51

SR11.1 Generic Web Service Security Verification Requirements & SR11.2 RESTful Web

Service Verification Requirements & SR11.3 GraphQL and other Web Service Data Layer

Security Requirements

Table D.20: API and Web Service Verification Requirements – Generic Web Service Security Verification

(SR11.1), RESTful Web Service Verification (SR11.2), GraphQL and other Web Service Data Layer

Security (SR11.3).

#RID Description OWASP NIST

SR11.1 All the application components must use the same encoding

and parsers in order to avoid parsing based attacks (i.e.

typically associated with SSRF and RFI attacks)

13.1.1 -

SR11.2 The application must limit the access to administration and

management functions to authorized administrators.

13.1.2 -

SR11.3 The application must not expose sensitive information (e.g.

API key, session tokens, etc.) in the URLs.

13.1.3 -

SR11.4 The application must enable for each user only the RESTful

HTTP methods that are allowed according to the user

permissions (e.g. prevent all users from using DELETE or

PUT on protected API or resources).

13.2.1 -

SR11.5 The application must enforce JSON schema validation before

accepting input.

13.2.2 -

SR11.6 The application must enforce protection against Cross-Site

Request Forgery (CSRF) by using a standard software

solution (i.e. framework solution or well know library).

13.2.3 -

SR11.7 The application should enforce query whitelisting or a

combination of depth/amount limiting in order to prevent

GraphQL expression denial of service (DoS) as a result of

expensive, nested queries.

13.4.1 -

SR11.8 The application should implement authorization logic at the

business logic layer instead of GraphQL layer.

13.4.2 -

SR12 Configuration Verification Requirements

There are some high-level requirements that are fundamental for the system:

• The application has a secure, repeatable, automatable build environment.

• Hardened third party library, dependency configuration management in order to guarantee that

out of date and insecure components are not included in the application.

• A secure-by-default configuration.

Failure to keep up to date insecure or outdated dependencies is the root cause of the largest and most

expensive attacks to date and as a result we can safely say that dependency management is critical for

the safety of the application.

 IDEA-FAST_D5.2_DMP Specification_v1.0.docx Page 51/51

SR12.1 Dependency & SR12.2 Unintended Security Disclosure Requirements

Table D.21: Configuration Verification Requirements – Dependency (SR12.1), Unintended Security

Disclosure (SR12.2).

#RID Description OWASP NIST

SR12.1 The application must leverage up to date libraries and components. 14.2.1 -

SR12.2 The application source code must not include any unrequired third

party library files (e.g. unneeded features, documentation, samples,

configuration, etc.).

14.2.2 -

SR12.3 The application must include a Subresource Integrity (SRI) check to

validate the integrity of any asset hosted on external source such as

content delivery networks (CDN), external providers. This applies for

example to JavaScript libraries, CSS stylesheets, web fonts.

14.2.3 -

SR12.4 The application should use only components from pre-defined,

trusted and continually maintained repositories.

14.2.4 -

SR12.5 The application documentation must include a catalogue of all third

party libraries in use within the application.

14.2.5 -

SR12.6 The application server and framework error messages must not

include unintended security disclosures. Only user actionable,

customized responses should be delivered.

14.3.1 -

SR12.7 The application server must run with the “debug mode” disabled in

production in order to prevent the disclosure of security relevant

information such as: debug features, developer console, etc.

14.3.2 -

