

IDEA-FAST

Identifying Digital Endpoints to Assess FAtigue, Sleep and acTivities in
daily living in Neurodegenerative disorders and Immune-mediated

inflammatory diseases.

Grant Agreement No. 853981

WP4 – WP Device Specific
Data Analytics and

Performance Assessment

D4.4: Requirements specification data
analytics software package

Lead contributor Teemu Ahmaniemi (VTT), Meenakshi Chatterjee (Janssen)

Other contributors Emmi Antikainen (VTT), Diogo Branco (FC.ID), Luan Chen (IMT),
Francesca Cormack (CCL), Julian Fierrez (UAM), Alejandro Peña
(UAM), Anita Honka (VTT), Dan Jackson (UNEW), Juha
Kortelainen (VTT), Xujun Ma (IMT), Haneen Njoum (SARD), Rana
Rehman (UNEW), Valentina Ticcinelli (UCB), Clémence Pinaud
(Lixoft), Chengliang Dai (ICL), Nguyen Truong (ICL), Kai Sun (ICL)

Reviewers Stefan Avey (Janssen, WP7), Jerome Kalifa (LIXOFT, WP7), David
Verweij (UNEW, WP3), David Wenn (IXS, WP1), Kai Sun (ICL,
WP5), Ioannis Pandis (Janssen, WP1)

Due date 30 Nov 2021

Delivery date 31 Dec 2021

Deliverable type R

Dissemination level PU

Document History

Version Date Description

V0.2 18 Nov 2021 Draft for internal review (WP3, WP4, WP5, WP7)

V0.3 26 Nov 2021 Distribution to Steering Committee

V1.0 31 Dec 2021 Final Version

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 2/32

Table of Contents

1 Abstract .. 4

2 Introduction ... 4

3 Platform and environment (ICL) ... 5

4 Data access and governance.. 6

4.1 Data Access through DMP Web-based UIs and APIs .. 6

4.2 Access Control and Data Governance ... 7

4.2.1 Authentication and Authorisation ... 7

4.2.2 Access Control and Data Provenance .. 8

5 DMP Analytical Environment user specs .. 8

6 Device specific data analysis .. 9

6.1 PROs via Stress Monitor Application .. 11

6.2 Physiological data .. 11

6.2.1 Data characteristics ... 11

6.2.2 Reading and pre-processing device-specific data ... 11

6.2.3 Analytical interests.. 12

6.2.4 Resource requirements .. 12

6.3 Activity data ... 12

6.3.1 Raw data ... 13

6.3.2 Reading of raw data and filtering .. 13

6.3.3 Implementation of the algorithms for feature extraction .. 13

6.3.4 Summarizing data ... 14

6.3.5 Other computationally heavy methods ... 14

6.4 Sleep Data ... 15

6.4.1 Raw Data and Feature Extraction .. 15

6.4.2 Data Cleaning ... 15

6.4.3 Data Mapping for Correlation Analysis .. 15

6.5 Social data ... 16

6.5.1 Raw data pre-processing .. 16

6.5.2 Data aggregation and feature extraction ... 16

6.5.3 Correlation Analysis ... 17

6.6 Cognitive test analysis ... 17

6.6.1 Raw data pre-processing .. 17

6.6.2 Coverage analysis .. 18

6.6.3 Data aggregation and feature extraction ... 18

6.6.4 Correlation Analysis ... 18

7 Multivariate analysis .. 18

7.1 General approach ... 19

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 3/32

7.2 Resources requirements ... 19

8 Requirements summary .. 19

9 Appendix 1 – IDEA-FAST Analytical Environment: User Guide ... 21

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 4/32

1 Abstract

This document specifies the preliminary requirements for the data analysis software package in the

IDEA-FAST project. The package was agreed to run in the analytical environment which is a part of

the Data Management Platform (DMP) developed in the project. Therefore, the document is written

for: 1) the developers of the analytical environment to understand the specific needs of the analysis

process; and 2) researchers and analysts to realise the data characteristics and analysis methods

developed in the project so far.

The DMP has been developed to store and manage the data collected throughout the project. The

analytical environment (AE) will allow users to analyse the project datasets without downloading and

keeping a copy of the dataset on their local computers, which further prevents data breaches. The AE

provides a web-based UI for users to access remote computing resources. Users can access the AE via

web browsers, using their email address and password to securely login. Scientific applications such

as Jupyter, Matlab, Tensorboard, RStudio will be available via the AE while the primary programming

language is Python. Access to Github repositories which are hosting code to perform the analysis is

also supported.

The main aim of the analysis is to predict fatigue and sleep disturbances. The analysis methods

presented in this document are based on the analysis pipeline described in detail in deliverables D4.1

and D4.3. They focus on device specific data processing methods divided in to 4 Concepts of Interest

(COI): Activity, Physiology, Sleep and Social/Cognitive. Devices of the Activity, Sleep and

Physiology COI share similar characteristics: they are collecting data continuously with a sampling

rate of 25-250Hz. The features of interest, step count, movement magnitude, heart rate and heart rate

variability, are calculated using basic signal processing methods available in Python libraries such as

Scipy and Numpy and the Matlab Signal processing toolbox. With cognitive and social COIs, the data

contains responses to cognitive tests conducted twice a day on a tablet, or mobile phone usage logs.

The amount of data in these cases is rather low and usually compressed to daily aggregates for further

analysis.

Actual prediction of fatigue and sleep disturbances is based on association- and multivariate analysis.

Featured device data is aggregated into time windows and then compared to each other and subjective

fatigue and sleep related ratings (PROs). General methods to be used are data normalisation, repeated

measures of correlation and regressor investigations. These methods can be implemented e.g. using

following Python libraries: pandas, numpy, scipy, pingouin, statsmodels, and sklearn. Finally, the

analysis results are typically reported in table or graph format using e.g. the matplotlib library.

2 Introduction

The role of the WP4 in IDEA-FAST is to perform device-specific data analysis. The analysis is divided

into two parts: A) data analysis aiming to assess the performance of the devices and apps selected for

the feasibility study (FS); and B) analysis of the data obtained from devices and apps used during the

clinical validation study (CVS). The main goal of the part A was to select the most reliable and accurate

devices for use in the CVS. In part B, the goal is to identify and further validate the digital measures

of fatigue and sleep obtained from the subset of devices in a larger cohort of participants.

The results of the part A were documented in deliverable D4.3, submitted in the end of September

2021. Devices were organized by four Concepts of Interest (COI) in the feasibility study: Physiology,

Activity, Sleep and Social/Cognitive. Analysis was conducted for devices per the COI. The analysis

task was divided across four sub-groups of analysts in WP4, each group being responsible for device

analysis for a given COI. Bi-weekly meetings together with all the groups ensured that the format and

resolution of analysis results were consistent across the groups.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 5/32

In addition to the data analysis, the aim of WP4 is to provide a software package that allows further

development of the analysis methods obtained in the IDEA-FAST project. For the data storage and

access, WP5 has developed a Data Management Platform (DMP) where all the data of the project is

uploaded and stored. The platform will also include an Analytical Environment (AE) which is intended

to run all the analysis steps developed by the sub-groups. This environment facilitates the software

package that is being specified in this document.

The primary users of the analysis software package are researchers and data analysts in IDEA-FAST

project and future researchers provided with access to the IDEA-FAST data via the DMP. Although

results reported in D4.3 provide the foundation of analysis of data from all digital devices, further

advanced analysis of the data from the FS is currently in progress. As such, this deliverable is intended

to provide the user specification of the AE, leveraging the current analysis framework and pipeline

already developed in D4.3. The scope of this deliverable is, therefore, to provide the specifications

necessary for users to implement and run the current analysis pipeline, developed in D4.3, on the AE.

As new analysis is conducted and methodologies are developed, the technical content of this document

is expected to accordingly adapt.

Sections 3, 4 and 5 describe the DMP, data access control and AE in its current state. Section 6 focuses

on the data characteristics of each device, suitable pre-processing methods and analytical tools applied

for the data. Section 7 describes the methods used in the multivariate analysis. Sections 6 and 7 are

based on the analysis conducted with the FS data so far. They aim to provide insight into the memory

and processing capacity needs as well as level of complexity in the analysis pipeline.

When moving towards the CVS, it is expected that: 1) data characteristics of the selected devices will

remain approximately the same as in the FS; and 2) the quantity of the data will be around 10 to 15

times as much per device compared to the FS, based on the current study plan. This will provide more

statistical power to the analytics and most probably improve the prediction accuracy of fatigue and

sleep.

3 Platform and environment (ICL)

Device-specific data collected during the project will be stored and managed on the IDEA-FAST DMP.

The data analytics software package which contains algorithms for identifying and analyzing device-

specific digital measures from the data will be run on the analytical environment of the DMP.

The AE is a secure and user-friendly environment where users can explore and analyse the datasets

hosted on the DMP through a web interface. The implementation is based on the Open OnDemand.

Open OnDemand is an open-source high performance computing (HPC) portal funded by National

Science Foundation (NSF). Open OnDemand offers an easy way for system administrators at ICL to

provide web access to ICL’s HPC resource, including:

• Graphical desktop environments and desktop applications
• File management
• Job management

Most of the popular scientific applications are available to users via Open OnDemand, including:

• Jupyter
• MATLAB

• Tensorboard

• RStudio

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 6/32

An overview of the architecture of the Analytical Environment is shown in Figure 1.

• Users use the AE to interact with their remote computing resources through a web browser.

• The AE management layer serves file management and job management services. It also

proxies the scientific applications from the computation layer.

• The AE computation layer provides computing resources, which is where the analytical scripts

and scientific applications are being run.

Users of the DMP will be able to access the analytical environment to write and execute their own

custom scripts to perform analysis based on their needs. The analytical environment will allow users

to analyse the project datasets without downloading and keeping a copy of the dataset on their local

computers, which further prevents data breaches.

Figure 1. The architecture of the DMP’s analytical environment.

4 Data access and governance

The IDEA-FAST DMP and the AE are designed to provide efficient and secure mechanisms to cope

with sophisticated data privacy legislations and requirements for data management, in particular, to

comply with the GDPR. Authentication and authorisation mechanisms are being designed and

implemented to verify users’ identities and manage access rights and privileges to data resources. This

is described in more detail in D5.2 and summarized below.

4.1 Data Access through DMP Web-based UIs and APIs

The DMP has implemented a Web-based User Interface (UI) so that end-users can access the DMP to

transfer data to/from the DMP in a secure manner. Besides the Web-based UI, we also provide APIs

so that third-party system and applications from other partners (e.g., clinical eCRF and patient-facing

applications) can interact with the DMP to access the resources. Such APIs provide flexibility and

convenience for the development and integration of different third-party systems and applications that

are being developed in the project. The Web-based UI page provides tools for users to customize their

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 7/32

requests such as upload data and download data in different formats (e.g., raw or standardised formats).

There are also several visualization tools providing basic knowledge (e.g., summary of the data

obtained). Keyword-based search functions are also provided via the UI to improve data findability

and reusability. The implementation of the UI makes use of React1, which is a component-based

JavaScript library for interactive UI development.

Applications that interact with the DMP using one of the APIs can filter and search the data by

specifying returned fields (e.g., select specific subjects and fields of interest) and adding filters to the

data (e.g., return subjects whose weights are lower than a value). The data can be returned either in a

raw format or standardized by the IDEA-FAST data standards developed by WP5.

All data querying and manipulation-related tasks are performed via GraphQL2. GraphQL provides

flexible access to the underlying data through composition, selection and mutation. Rather than using

various path based URIs and HTTP methods, it uses a single endpoint with a predefined schema that

specifies how to fetch and change data. Compared to other API design architectures such as REST,

GraphQL allows clients to make more precise APIs calls to fetch exactly the data they require from

the server, therefore preventing over- and under-fetching.

4.2 Access Control and Data Governance

The DMP allows users to upload data including clinical data, sensor data and general files hosted on

the DMP using the Web-based UI or the provided APIs. Users can also perform integrated data

modelling and analysis to identify novel digital endpoints via the AE of the DMP.

It is a fundamental premise that no data shall be accessible to any party, internal or external, without

full ethical sanction, and that only pseudonymised data will be shared within the IDEA-FAST

Consortium. With this access control and data governance in mind, the DMP will implement security

and privacy mechanisms that enable users and applications to access the pseudonymised clinical and

device data for data exploration and analysis in a secure manner.

Generally, datasets generated in the IDEA-FAST project as well as extant datasets provided by

academic and EFPIA partners contain sensitive information (e.g., a participant’s clinical records). To

ensure data security and privacy, as well as to cope with sophisticated data privacy legislations and

requirements, the DMP is designed to provide efficient and secure data access and management.

Advanced authentication and authorisation mechanisms with role-based access control model are

being designed and implemented to verify users’ identity and manage access rights and privileges to

data resources. In addition, for data provenance and accountability, an automated audit trail

functionality is implemented that tracks all queries/analyses performed against the DMP.

4.2.1 Authentication and Authorisation

Authentication is the process of validating a user’s identity to permit access to the DMP. During this

process, the user’s credentials (such as username/user ID and password) are checked and verified by

the DMP. In the current version of the DMP, a Two-Factor Authentication (2FA) mechanism has been

implemented to further secure access to project datasets.

Authorisation is the process of determining whether the authenticated user has access to a particular

resource on the DMP. During this process, the authenticated user’s rights and permissions are checked

and verified by the DMP. In the current version of the DMP, Role-based Access Control (RBAC) has

been implemented to secure access to project datasets.

1 https://reactjs.org/

2 https://graphql.org/

https://reactjs.org/
https://graphql.org/

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 8/32

4.2.2 Access Control and Data Provenance

In the DMP, permission of user to data access control is based on RBAC. A system administrator can

assign system-level roles to users, and a system admin/data manager can assign resource-level roles to

users to manage access of a specific dataset. Table 1 summarises different user roles and their rights

in the DMP.

Table 1. Different user roles in the DMP.

Role Rights

System-level User Roles
System Admin Log in to the DMP, view the list of users, view and modify account

information, deactivate/reactivate a user, delete a user account, create and
delete a dataset, access datasets on the DMP, access user activity log

System User Log in to the DMP, access datasets based on permission
Resource-level User Roles

Data Manager View the dataset, assign resource-level roles to users, manage access
control for the dataset, upload data to the dataset, download data from the
dataset, delete data in the dataset, run analysis on the dataset in the DMP
analytical environment

Data Uploader View the dataset, upload data to the dataset, run analysis on the dataset in
the DMP analytical environment

Data Downloader View the dataset, download data from the dataset, run analysis on the
dataset in the DMP analytical environment

Data Viewer View the dataset, run analysis on the dataset in the DMP analytical
environment

We have also implemented a logging mechanism so that all user activities on the DMP are tracked and

recorded in an activity log. Malicious activities (e.g., suspicious logon and logoff attempts) can be

identified which can reduce security risks and prevent data breaches. An activity log record contains

information including the username, operation type, time and the request status. Note that the user

activity log is only visible to the system admins.

5 DMP Analytical Environment user specs

The DMP AE provides a web-based UI for users to access remote computing resources. Users can

access the analytical environment via web browsers with their email address and password.

The AE provides an interactive file explorer. Users can view, edit, upload and download files or scripts

in the analytical environment. The AE also provides an interactive jobs submission system. Users can

submit their custom scripts to remote computing resources and get computing results back.

Python and R packages are pre-installed in the analytical environment. The packages encapsulate the

data APIs of the DMP. Users can access the DMP data via these packages.

Scientific applications are also pre-installed in the AE. These applications can be launched by users

and they will be running in remote computing servers. Users can interact with the applications via the

web browser. Currently, the AE supports Matlab, RStudio and Jupyter notebook.

For more information, see the user guide of the analytical information in Appendix 1.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 9/32

6 Device specific data analysis

The data analytics will follow the general analytics pipeline depicted in Figure 2. The pipeline can be

executed for individual subjects or used to summarize results (starting from the quality assessment

block) over several subjects selected, e.g., by cohort. The correlation analysis can consume data from

other sources, such as other devices or the patient reported outcomes (PROs). The analytics pipeline

will be executed automatically to a certain extent but, importantly, execution with custom parameters

will also be enabled.

Specifically, the analytics pipeline requires access to: (1) all data collected by different technologies;

(2) the medical background information of the participants; and (3) patient reported outcomes. The

data from all technologies should be linked to the correct study, participant, and device identifier, so

that the data can be adequately filtered, as described in section 4, e.g., for cohort analysis. Participant

IDs are moreover used to fetch the participant’s medical information, such as their disease cohort.

Furthermore, when developing the pipeline, the data was consumed in the aforementioned ID-driven

hierarchical order (study ID being the top level). Therefore, the pipeline input and output routines

expect a similar hierarchical storage structure. The operability of the pipeline depends on the input and

output utilities; however, it is possible to adapt them to work in the DMP analytical environment. In

addition to the data input, the pipeline also consumes parameter input for the analytics. Importantly,

the input parameters need to be adjustable in order to enable different types of analyses. For instance,

subject-level analysis could be different from COI-level analysis.

Figure 2. A schematic representation of the analytics pipeline structure, consisting of three analytical blocks..

The most important intermediate outputs (clean data and aggregations) are presented with file icons in the

lower part of the figure, and the output reports are presented with laptop icons.

The different steps in the analytics pipeline have some specific requirements. After gaining access to

the desired (subset of) input data, device-specific requirements on the data files need to be considered.

For instance, the pipeline does not support nested zip files that, e.g., the VTT Stress Monitor

Application provides. Inconsistent filenames and typographical errors can impose fatal problems as

well, and more strict data upload requirements may come into question when automatic solutions

cannot be implemented. Data pre-processing, including validation and cleaning, in general comprise

many device- and COI-specific analytics parameters that are further discussed below.

For coverage, feature aggregations, and association analysis, one of the most important general

requirements is the adjustable analytics window. The window may be defined via entirely customized

window boundaries, or via a predefined length and a single timestamp per window, defining either the

start, end, or centre point. Typically, such information is read from a file (e.g. the PRO timestamps).

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 10/32

Different COIs naturally require different aggregation functions that are applied on the windowed data.

Bringing the analysis to the final steps, the feature aggregations and the corresponding coverage values

need to be accessed together because a coverage threshold is typically used to filter the aggregates

before association analysis.

Finally, the analysis results from a selected (sub-)set of participants and devices are summarized. The

summary can for instance represent coverage, quality, or association results within the selected group,

constructed from the quality results or features obtained for individual participants. The association

analysis typically studies similarities between two devices (device-to-device agreement) or between a

device and PROs. An example of result visualisation is presented in Figure 3.

Figure 3: Example of result visualisation: (Top) coverage of the AX6 activity monitor by disease cohort

(colours); (Bottom) correlation (R-values in colour-scale, significance indicated with red border) between

device data (DST results) and PRO (SMA features).

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 11/32

Naturally, the analytics pipeline may evolve throughout the project, with new code introduced to the

pipeline. The pipeline versioning is handled using GitHub. As such, different pipeline versions need

to be importable into the DMP AE.

6.1 PROs via Stress Monitor Application

The questionnaire results collected via the VTT Stress Monitor Application (SMA) are embedded in

the same data files as the phone usage data collected passively. Because the questionnaires are

prompted at predefined times, the coverage and validation process may differ slightly from those

technologies with frequently sampled data. However, the low questionnaire recurrence produces rather

sparse data, which does not impose strict specifications on the analytics environment, even though the

questionnaires need to be parsed from semi-structured JSONL format to tabular format. The

questionnaire response extraction only requires the nested zips (SMA data saving format on the DMP)

to be extracted, which can be executed programmatically given the generally specified ID-driven

hierarchical data structure. The nested storage format may be resolved by separating the audio

questionnaire content into separate files in the DMP, which should yield two un-nested zip files.

6.2 Physiological data

For the physiological COI, data is collected with wearables used round the clock. In the FS, the COI-

specific devices were VitalPatch and Byteflies (the ECG-dot). Both devices are worn on the thorax.

6.2.1 Data characteristics

The sampling frequencies of physiological data recorded in the FS are listed in Table 2. The raw

electrocardiograms (ECG) represent the densest physiological data. In addition to the frequently

sampled data, VitalPatch also records R-to-R intervals and Byteflies derives R-peak occurrences in

time. Naturally, the infrequent interval data may occasionally be processed differently as compared to

other data, for instance when computing data coverage.

Table 2. Physiological data sampling frequencies.

Device Sampling frequency (Hz)

ECG Heart rate Respiratory rate Skin temperature

VitalPatch 125 0.25 0.25 0.25

Byteflies 250 0.1 1/60 -

6.2.2 Reading and pre-processing device-specific data

The two devices for physiological measurements require device-specific pre-processing, which may

however be possible to execute automatically as the data arrives. For VitalPatch, the ECG-derived

features and skin temperature are scattered across multiple files and need to be parsed together for each

participant. The data columns need to be named retrospectively and Unix timestamps interpreted as

datetime. For Byteflies, the data is not only scattered into multiple files per participant, but also in

different files by data type. The data is first processed by WP3. Thereafter, fetching the correct data

requires scanning through the metadata to locate the desired files. Importantly, the measurement start

time needs to be read from the metadata and added to the duration in the data files to yield the correct

datetime. Once the data are collected together, it is convenient to name the columns consistently to

what is expected by the analytics pipeline modules by default. Finally, the Byteflies R-peak data should

be processed into R-to-R intervals.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 12/32

As for the raw ECG data, advanced analysis from either device may require, e.g., detection of specific

parts of the ECG signal, for instance the QRS complex. For QRS detection, computational complexity

is at least linear but can be notably higher for more elaborate algorithms (e.g., wavelet-based

detection).

Physiological data cleaning accounts for non-physiological values (range outliers) and contextual

outliers. The latter are localized using a sliding window of predefined length. In addition, each device

may require specific cleaning steps. For instance, VitalPatch data needs to be inspected for invalid

values (one predefined value for each raw signal or derived feature), whereas Byteflies incorporates

metadata with a quality label for the full recording as well as labels for individual R-peaks that need

be considered upon cleaning. Furthermore, if the raw data quality was insufficient, the derived features

may exceed the expected sampling frequency. Hence, such sequences should also be cleaned from the

data.

6.2.3 Analytical interests

The length of analytical windows for physiological data are usually driven by heart rate variability

(HRV) analysis. One of the most typical ways is to perform HRV analysis over one night’s sleep

(several hours), but some applications may use much smaller windows (such as 10 minutes), although

it affects the interpretation of the results. And because physiological parameters strongly interplay with

physical activity, the activity analysis can also complement the physiological analysis, indicating some

specific windows of interest (e.g., recovery after exercise). On the other hand, it may be interesting to

inspect also much larger windows, e.g., daily or weekly resting heart rates. Naturally, aggregations

over longer windows produce less data, reducing the need for computational resources.

6.2.4 Resource requirements

The most resource consuming part in processing physiological data presumably arises when processing

the raw ECG data. For instance, for VitalPatch, individual files exist in the order of tens of megabytes,

and each participant produced hundreds of such files already in the FS. Combining the high volume of

data with potentially highly complex algorithms can explode the processing time. This may be helped

by performing the processing in parallel for individual files, before combining the results to create one

resulting file for each participant. For ECG-derived features, data cleaning is one of the most

demanding steps, namely filtering outliers with sliding windows. For small analysis windows,

extracting the HRV parameters using the hrv-analysis package (https://github.com/Aura-

healthcare/hrv-analysis) may also become demanding.

For advanced analysis, implementing machine learning and neural networks for data cleaning or

analysis will likely require multiple CPUs running in parallel and, most importantly, GPU or TPU

resources with large memory (at least 11 GB for e.g. Transformer networks).

6.3 Activity data

Within the Activity COI, we had four devices in the FS attached to various body locations. For

example, MoveMonitor (MM) was attached on the lower back, Axivity (AX6) was attached to the

wrist, while the Byteflies (BTF) and VitalPatch (VTP) were attached to the ankle and chest

respectively. Each device has either built-in accelerometer (Acc) or gyroscope (Gyr) modules e.g. MM,

AX6, and BTF have both Acc and Gyr while the VTP has only an accelerometer.

https://github.com/Aura-healthcare/hrv-analysis
https://github.com/Aura-healthcare/hrv-analysis

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 13/32

6.3.1 Raw data

The more modules each device has, the more space/storage capacity we will need. In addition, the raw

data file format also plays an important role e.g. MM and AX6 have raw file format in .OMX and

.CWA respectively which takes less than 1 GB of storage for one time assessment (around 7-10 days),

while the BTF and VTP store the data in the .CSV formats which can take more than 5 GB of storage

for each individual subject. Furthermore, each device can send the data at different frequency rates

configured by the assessor during the clinical assessment. The approximate sampling frequency of

each device is given in Table 3.

Table 3. Physiological data sampling frequencies.

Device Sampling frequency (Hz)

Accelerometer (Acc.) Gyroscope (Gyr.)

MoveMonitor (MM) 100 100

Axivity (AX6) 100 100

ByteFlies (BTF) 25 25

VitalPatch (VTP) Dynamic ---

6.3.2 Reading of raw data and filtering

Reading the raw data can be computationally heavy as the code will read the 7-10 days of data recorded

at a certain frequency for saving it into .CSV or .MAT file or perform certain operations on it by

loading a chunk of it. For efficient processing of the MM and AX6 data, the code provided by the

“Open Movement” (https://github.com/digitalinteraction/openmovement-python) can be beneficial.

On the other hand, raw data from these devices does not always come at the same frequency. So data

interpolation (up sampling or down sampling) can be computationally heavy to match the data rate for

every second. After proper sampling of the data, data filtering to remove the unwanted noise is

generally a less computationally heavy step, python library “SciPy” can help here or built-in “Signal

Processing” toolbox in Matlab can also be utilized.

6.3.3 Implementation of the algorithms for feature extraction

Custom algorithms developed in Matlab and Python will be utilized. The folder structure and file

naming convention will remain the same even if a different software/platform will be utilized. Features

from the raw accelerometery data will be extracted day by day so running multiple blocks of code for

activity classification first such as gait/turning identification and later extracting detailed clinically

relevant features for analysis. For this purpose the published algorithm will be utilized e.g. GaitPy

(https://joss.theoj.org/papers/10.21105/joss.01778), OpenMovement

(https://github.com/digitalinteraction/openmovement-python), and Accelerometer from UK BioBank

(https://biobankaccanalysis.readthedocs.io/en/latest/methods.html/,

https://github.com/activityMonitoring/biobankAccelerometerAnalysis). Furthermore, these activity

devices can also be used for the sleep/time on bed estimations as the subjects wear these devices for a

complete 24 hours. Therefore, the acceleration signal can be used for this purpose. An open source

package in R named as GGIR (https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html) is

frequently used in the literature for sedentary activity behaviour (severe, moderate, vigorous) and for

objective sleep quantification from a wearable inertial sensor data. Reading files by this package and

storing them first time can be computationally heavy as it will need to run through all the folders to

search for the proper file extension and then extract it.

https://github.com/digitalinteraction/openmovement-python
https://joss.theoj.org/papers/10.21105/joss.01778
https://github.com/digitalinteraction/openmovement-python
https://biobankaccanalysis.readthedocs.io/en/latest/methods.html/
https://github.com/activityMonitoring/biobankAccelerometerAnalysis
https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 14/32

6.3.4 Summarizing data

Until now in the FS, we have not used the custom algorithms for the feature engineering. Instead, we

relied on the features provided by the device manufacturer directly. We presume that the data summary

will remain the same in both cases: 1) we use the features provided by the device manufacturer; or 2)

we use the features extracted with the custom algorithms on the analysis platform. The computationally

heavy steps are briefly highlighted in the below process, which we have used for the FS data analysis.

a. Data Validation/cleaning

The features summarized as epoch by epoch (1 minute length) are used in this process. If the features

provided by the device manufacturer do not have regular intervals then re-arranging the data can be

computationally heavy. As we had this case only for the MM device, the rest of the devices provided

the features at proper intervals. Processing of the BTF data to have the activity features from the ankles

also increases the workload due to finding the proper labels from the JSON files. For the VTP device,

further data cleaning to remove outliers or to merge data from different days are not computationally

heavy.

b. Data daily coverage and quality

The function used for the daily coverage and quality assessment are efficient and not computationally

heavy. One thing to keep in mind here is to adjust the percentage of good quality data for keeping a

specific day for analysis. In addition, the number of days used for the coverage in the current analysis

was 10. Perhaps in future we may need keep this number dynamic rather than fixed. However, these

points will not affect the computational time.

c. Matching with PROs – Window size

Within the FS analysis, we have observed that window size can have impact on the association between

the PROs and the features provided by the device manufacturer. Therefore, keeping this number

dynamic in the code is important. As the code will be running on the already processed data, this step

will not be computationally heavy.

For this step, PRO data should be in the separate folder already extracted in the .CSV file.

d. Saving data

At every step mentioned above, the output will be written to a .CSV file within the subject/device

folder or within the subject folder but outside of the device folder, depending on the type of output.

The final data summary will be saved within the study folder along with the plots of coverage and data

quality.

6.3.5 Other computationally heavy methods

Activity classification methods using machine learning (deep learning) methods can be

computationally heavy. For example, training a deep neural network such as CNN or LSTM on the

raw time series data will require computational power supported by the GPU/TPU. The other

computationally intensive tasks can be to extract signal-based features directly from the timeseries

data to find new markers for better predication/correlation with PROs. Therefore, appropriate

mechanism within the analytics tool is required to allocate appropriate resources automatically or

assign some labels to request resources while submitting the job to the platform.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 15/32

6.4 Sleep Data

For the sleep COI, three main devices have been considered for measurements in the FS. Specifically,

eBedSensor is a force-sensitive piezo-electric film that is placed under the mattress during sleep.

ZKONE is a wireless sensing radar device which uses an Ultra-Wide Band (UWB) signal to detect

human vital signs. The Dreem headband is worn by the subject during sleep and records physiological

data in real time. All three devices are able to provide basic sleep indicators and the corresponding

measured data can be collected through either a physical portal or dedicated cloud platforms.

6.4.1 Raw Data and Feature Extraction

For the three sleep sensors, some data processing algorithms are ether built into their hardware or

deployed in a remote server. After evaluating the nocturnal recordings from participants, basic

physiological measures (e.g., average heart rate, average respiration rate) and sleep-related assessment

results (e.g., sleep duration, hypnogram, and sleep efficiency) are stored in ‘.JSON’ files (for ZKONE

and Dreem) and ‘.CSV’ files (for eBedSensor). It is worth noting that the raw data format of

eBedSensor is represented by ‘.HRV’ files, which can be fed to an internal pipeline to generate the

above aggregated ‘.CSV’ files for further analysis.

In order to extract relevant features from raw data, while taking data format unification into account,

the .JSON files from ZKONE and Dreem devices are first processed by extracting and aligning features

from all given participants. The intermediate .CSV files could be saved for each device category. In

detail, some identifiable information are marked in the file name. For instance, a .CSV file from the

Dreem device could appear as “E3C7X5F-DRM7HH5EN-20210407-20210505_aggregation_

12.csv”, where “E3C7X5F” is the participant ID, “DRM7HH5EN” is the device ID, followed by the

starting and ending dates for the data recording. The last number “12” means the effective days for

data collection. Thus, all saved files would be treated as input to conduct the following coverage

statistics as well as correlation analysis.

6.4.2 Data Cleaning

After feature extraction, data cleaning is deployed to filter out abnormal nocturnal recordings for every

participant. Note that duplicated recordings belonging to the same night should not be counted. So, in

our pipeline, duplicated recordings are discarded by keeping only one recording with longest sleep

duration per night.

After that, to define outliers for each device, a 2-hour sleep duration is utilized as a normal threshold

to pick out too-short sleep episodes. Specifically, for ZKONE and Dreem, the parameter

‘sleepduration’ is utilized, while the parameter ‘SLEEP RECs’ is utilized for eBedSensor. The

information of all outliers will be stored in the sub-sheet (‘Outlier_sleeps’) with participant IDs and

testing dates listed in detail.

From the patient database provided by UCAM, intended device testing periods are utilized to calculate

the nightly coverage for the participant and cohort information is utilized to split coverage results into

different sub-sheets of the same summary Excel file for each device.

6.4.3 Data Mapping for Correlation Analysis

For the purpose of studying associations with PROs or features from other devices, we adopted an

aggregative mapping strategy which selects the most desirable features from the three sleep sensors.

To map with PROs for each participant, the time basis falls on the PRO’s testing duration. To map

within the sleep COI category, we stick to the shared testing duration for all devices. After the mapping

for all participants, an additional grouping step is implemented based on the UCAM cohort

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 16/32

information. Finally, as for the feature unit unification issue, we also standardize all the time units into

seconds and convert all percentage parameters into the interval of 0 to 1.

a. Mapping with PRO

In practice, there exist lots of manual input errors for the PRO application, e.g. 'To_bed_Time', which

might result in usually a 12-hour time shift. Additional time calibration or compensation is needed in

such cases before the mapping procedure with PROs. This sub-function has been built into the pipeline.

Likewise, the aggregated device features along with PRO counterpart would be saved as .CSV files

for the future correlation analysis.

b. Mapping across Devices

As mentioned above, we combine all three sleep sensor features according to their shared recording

duration for the study of cross-device agreement. Similarly, they are also saved as intermediate .CSV

format. The selected features are identical to those for the PRO mapping.

6.5 Social data

Social data for the Feasibility Study were collected, together with the patient reported outcomes

(PROs), using the VTT Stress Monitor App. To date, there are 147 data files available in the IDEA-

FAST DMP containing SMA data, which comprise around 1.2 GB of data volume. As we mentioned

before, these files are also processed within the other COI pipelines to extract questionnaire answers.

Raw social data are stored in JSONL files, which contain mobile data records including a timestamp,

a data type (e. g. PHONE_SCREEN in the case of screen on/off related records), a data value and a

geolocation code. As these instances are recorded when changes occur in the mobile phone (i.e. the

patient turns on/off the screen, the phone battery changes, the patient completes a questionnaire…),

social data do not have a fixed sampling frequency. Thus, the analysis conducted on social data mainly

consist of selecting records based on the instance type to compute features within fixed timeslots.

6.5.1 Raw data pre-processing

Following the general analytic pipeline of Figure 1, raw social data should be pre-processed before

conducting any coverage/feature extraction process. The pre-processing steps include missing data

removal (i.e. files with no data recorded or without questionnaire answers3), validating the timestamp

of the records, removing files with few data recorded, or merging the data of patients with multiple

files. These steps can be conducted using common data science Python libraries like Pandas and

NumPy.

6.5.2 Data aggregation and feature extraction

During the FS, social data were aggregated in timeslots of 24 hours (daily windows). The analysis

conducted by WP4 revealed that there is no significant difference in the results when using time

windows of both longer (2-day) and shorter (8-hour) duration. Unlike other COI data, social data

usually presents large periods between samples of interest (i.e. those related to screen activations and

foreground apps). This fact led us to discard short-time aggregation windows to maximize the utility

of the information in each window. For example, choosing a short time window would reduce the

number of screen activations within each timeslot, thus limiting the variability in the features extracted.

3 A list of IDs with empty SMA files or with no questionnaire answers can be found here. However, there are

code implemented in the IDEA-FAST GitHub to detect and remove these files as a preprocessing step of the

SMA data.

https://newcastle.sharepoint.com/:p:/r/sites/idea-fast/_layouts/15/Doc.aspx?sourcedoc=%7B29C4E93F-E7B4-4AB2-B38D-F2EC88004F2A%7D&file=stressapp_questionnaire_extracted_data.pptx&action=edit&mobileredirect=true
https://github.com/ideafast/ideafast-pipeline/blob/dev/src/ideafast_pipeline/utilities/SMA_preprocessing.py

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 17/32

On the other hand, using long-time windows reduces the number of data points to compute the

correlation with the PROs.

Attending to the feature extraction steps, we propose to compute several screentime statistics (e.g. total

screentime, number of screen events or median time per screen activation), and the frequency of each

app category within timeslots. Again, due to the dataframe-like nature of social data, feature extraction

can be easily done using both Pandas and NumPy libraries. When extracting screentime features, it is

important to remove unmatched PHONE_SCREEN records, that is, screen instances without its

corresponding pair. For example, if the first screen instance in a record is a SCREEN_OFF notification,

or the last one is a SCREEN_ON, we cannot extract any screentime from those notifications. The same

applies when we encounter two consecutive PHONE_SCREEN instances with the same value.

Another case to consider are extremely long screen activations, which are normally due to application

breaks and gaps in the data.

During feature extraction, we also recommend computing the mean and the standard deviation of each

feature to remove outliers before associating the features with the PROs.

6.5.3 Correlation Analysis

Before starting the correlation analysis, it is important to extract questionnaire answers and store them

in a separate .CSV file. We note here that ‘Activities_Q3 (Other comments)’ is designed as a free,

optional answer question, which usually has no response across subjects. Hence, we recommend to not

consider it during the analysis. Conducting the repeated measures correlation analysis is probably the

computationally heavier step in the social pipeline. While this analysis presents no problems when

computing the association between screentime features and the PROs, due to the distribution of the

app categories across subjects, the correlation analysis between foreground apps features and the PROs

was restricted to only 2 categories during the FS. The correlation analysis can be conducted using

Python libraries like Pingouin. As there is only one device recording social data, we did not perform

any mapping across devices within the social COI.

Due to the lightness of social data, it takes around 10 to 15 minutes to obtain both the correlation and

the data coverage results from running the social pipeline on the raw records from all the patients.

6.6 Cognitive test analysis

Cognitive data for the Feasibility Study were collected using the ThinkFast App (TFA). The IDEA-

FAST DMP contained 166 files when the analysis for D4.3 was performed, amounting to ~8MB of

compressed data volume. The compressed containers were named following the format PatientCode-

DeviceCode-YYYYMMDD-YYYYMMDD. Often, more than one container is generated for each

subject. The raw data are stored in JSON files, which contain data records including timestamps for

start and end time of each session, and a list of items describing each datapoint through fields like

"measureCode", "measureDescription" and “Result”.

Reminders to take the test were presented to the subjects twice per day, in the morning and in the

afternoon, with the goal to acquire measures twice per day. Three types of tests were presented: PVT

(for 1 week), DSST (for 1 week), and NBX (for 2 weeks).

6.6.1 Raw data pre-processing

From the numerous measures obtained with the TFA tests, the 8 most relevant were identified with

regards to the fatigue COI, and considered as base features. Due to the discreet nature of the TFA data

and the relative small size of the files, it was convenient to merge all the entries in one unique file

before proceeding with coverage and correlation analysis.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 18/32

The libraries zipfile, tkinter, pandas, pathlib, os, json and datetime were used for the scope.

6.6.2 Coverage analysis

Coverage calculations were computed at TFA level (measuring compliance of the participants) on

three different levels: per test type, per disease group, and in total. 100% coverage corresponded to

having provided the expected number of answers (i.e. 2 per day, for 5 days per week, per test). It has

to be noted that even this was an arbitrary choice, as the reality of the data morphology was more

complex (people took the tests for longer periods than expected, or for more than 5 days per week).

The Python packages required to run the code are NumPy, scipy and matplotlib.

6.6.3 Data aggregation and feature extraction

In order to account for possible learning curves in the performance of the tests, for each of the 8

selected features, the corresponding “learning-curve-residual” feature was calculated. This means that

if the linear interpolation of the datapoint in time (for each participant and for each feature) had a

positive angle, the residuals were computed from this line. On the other hand, if the data in time showed

no improvement (i.e. negative or null slope), just the average was removed to calculate the residuals.

With the goal of correlating PROs and TFA features, the data were then aggregated in 24-hours slots.

Because of the scarce alignment between TFA and SMA data-points, the choice of shorter time-

windows was ruled out because it reduced the chance of both SMA and TFA data being included in

the same slot (i.e. causing data loss). Moreover, shorter slots did not qualitatively change the final

correlation results. For each participant, one file for the SMA and one for the TFA included the list of

daily average of their scores.

The Python packages required to perform these steps were pandas, pickle, NumPy, scipy and

matplotlib.

6.6.4 Correlation Analysis

Repeated measures correlation analysis was conducted on the aggregated PRO and TFA data, derived

as described in section 6.6.3, above. Repeated measures analysis was conducted using the Pingouin

package in python. With the relatively compact datasets involved, the process is not computationally

intensive and correlations could be obtained across all cognitive outcome measures and PRO measures

in approximately 10 minutes. Consistent with the constraints around analysis discussed in section

6.5.3, only data from SMA PRO questions producing numeric responses were considered.

Python packages used in data import, shaping, analysis and visualisation are: Pandas, matplotlib,

pyplot, NumPy, os, re, glob, seaborn, openpyxl and Pingouin.

7 Multivariate analysis

The multivariate analysis combines multiple sources of data to build regressors that predict self-

reported outcomes. To run the analysis, different sources of data are needed:

• Demographics information is used as covariates and can be found in clinical data (UCAM

data). PROs assessed at baseline may also be used as covariates;

• Digital features representing the five COIs that were extracted automatically from raw sensors

by WP4 (raw data pre-processing and feature extraction is detailed in section 6);

• Weekly PROs (UCAM data);

• E-diary questionnaires automatically extracted and cleaned from SMA raw data (section 6).

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 19/32

Digital features are aggregated to match the PROs frequency (weekly aggregation to match weekly

PROs, daily or more detailed aggregation to match daily self-reported outcomes) and features with

low coverage are removed from the analysis. A mapping between participants and timestamps is

performed to gather all sources of data: covariates, aggregated digital measures from all COIs, PROs.

Datasets may be created on different time windows and match different types of PROs. They are saved

in a .CSV file to be used in multivariate analysis.

7.1 General approach

A cross validation procedure is applied that splits the dataset into a training set and a test set. The

model is trained on the training set and its performance is assessed with the test set. A “leave-one-out”

cross-validation puts one participant aside in the test set. If the dataset is stratified into k folds, the

stratification must preserve the percentage of participants from each cohort within each group as much

as possible.

A feature selection is then applied on the training set. To remove redundancy between features, digital

features are clustered based on their pairwise correlations. Within each cluster, only the measure with

the highest correlation with the PRO is kept to build the model.

Features are normalized (z-norm) and missing data are imputed with the participant average value.

PRO values are transformed to get closer to a normal distribution (e.g. boxcox transformation).

Different types of regressors are investigated, such as linear, ordinal, non-linear, and mixed-effects

regressors. Analysis is performed on the total population or on sub-groups of participants, in particular

per cohort or per group of cohorts.

The python libraries required to perform the features selection step are scipy, statsmodels, pingouin.

The cross-validation procedure, the performance assessment of built models, and machine learning

models training steps are implemented using sklearn library. Linear, ordinal, and non-linear mixed

models can also be investigated using R packages lme4, and ordinal.

7.2 Resources requirements

In the cross-validation procedure, the feature selection may be computationally heavy, especially the

computation of the pairwise correlation matrix when a lot of features are involved, mostly if repeated-

measures correlation is computed. In future analysis, other methods to impute missing data (e.g.,

model-based imputation) will be used that may require more resources.

For advanced analysis, implementing recurrent neural network directly on raw sensor data will require

GPU or TPU resources with large memory.

8 Requirements summary

As sections 6 and 7 indicate, the need for data processing of each COI depends on the characteristics

of the data. However, there are some commonalities in the data handling. The data analytics pipeline

generally requires a variety of python packages to provide basic functionalities, such as presented in

table 4.

Table 5 summarizes the COI-specific data characteristics, features and needed libraries for the data

processing.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 20/32

Table 4. The basic libraries and toolboxes needed in each phase of the analysis pipeline including

multivariate analysis and machine learning methods

 Data input Analytics Visualisation Other

Python libraries os, glob, re, zipfile,

pathlib, sys,

packaging, json

pandas, numpy, scipy,

pingouin, statsmodels,

scikit-learn (sklearn)

matplotlib,

seaborn

sys, packaging,

datetime, dateutil

Matlab toolboxes Signal Processing,

Statistics and Machine

Learning Apps

R Studio readxl lme4, ordinal, tidyvers,

nlme

ggplot2 Reticulate, foreign,

dplyr, DHARMa,

olsrr, HLMdiag

Table 5: Summary of COI data, typical features and needed libraries

COI Data

acquisition

Raw data

rate

Key

Features

Feature

time win

Feature

description

Special libs

Daily

PROs

Prompted 4/day Fatigue,

Sleepiness,

Anxiety

 Subjective

rating

pytz

Physiology Evenly

sampled and

irregular

125-200 Hz HR, RespR,

R-to-R

1min-

Daily

Peak

detection,

Frequency

analysis

hrvanalysis,

(neurokit2)

Activity Evenly

sampled

25-100 Hz Steps,

Energy, SVM

1min-

Daily

Movement

magnitude,

step detection

OpenMovement,

UK BioBank

Accelerometer,

GaitPy, tfresh,

GGIR (R)

Sleep Evenly

sampled

during night

Beds 110Hz

Dreem 250Hz

ZKOne 0.5Hz

Sleep Q

Sleep time

RespR

WakeUps

Nightly Frequency

analysis,

repeated

measure

correlations

itertools,

collections,

sqlite

Social Phone

usage/events

~50

events/day

Screentime

appUsage

Daily Mean screen

time, app ID

count

Cognitive Prompted 2/day DST Move-

ment latency,

PVT time-

outs, residual

PVT time-

outs, residual

PVT Score

Daily Residuals

from linear

interpolation,

repeated

measures

correlation

analysis

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 21/32

9 Appendix 1 – IDEA-FAST Analytical Environment: User
Guide

This document provides guidelines for a user to:
1. Use the IDEA-FAST analytical environment to run customized computing scripts;

2. Use the built-in services of several popular computing tools, including MATLAB, Jupyter

and RStudio. A web-based desktop GUI is also provided (Spyder is in progress).

Notice:

1. The Analytical Environment (AE) uses dmpy to interact with the IDEA-FAST Data

Management Platform (DMP). Dmpy is a python wrapper of the Application

Programming Interfaces (APIs) of the DMP.

2. The Analytical Environment does not provide licenses for those services required (e.g.,

MATLAB). You need to activate such services with your own licenses (see below).

3. As of the date of this deliverable, the AE has not yet been formally released.

Login

Step 1: Go to the main page. Enter your username and password.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 22/32

Create a job:
Step 1: Click “Jobs -> Job Composer” on the main page:

In this page, you can view all submitted jobs and their details.

Step 2: Follow the instructions on this page to create a new job:
1. Click “New Job” to create a new job using one of the three approaches:

a. From default template: run a default template to test if the AE works well;

b. From specified path: you need to specify the parameters of this job, see the figure

below;

c. From selected job: rerun an old job. To use this approach, you need to select an

old job from the job list first then create a new job. See the figure blow.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 23/32

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 24/32

You can also customize your own template for further use.

2. Generally, you are not supposed to edit the scripts at this page; but we provide the

online-editing tools for you if necessary. Click ‘Open Editor’ at the bottom of job details

to make any changes.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 25/32

3. Go back to the job page. Select the job and click “Submit” to submit a job.

Check the status/results of a job:
Step 1: Go back to the main page. Click “Jobs -> Active Jobs”:

Step 2: Check the outputs based on your scripts. We use a script that simply outputs a sentence
and saved in a file. Go to the folder of the scripts and you can see the outputs there. You can
click the “Files” at the top of this page to access the folder.

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 26/32

Using Desktop:
Step 1: Go to “Interactive Apps -> Test Desktop”, and configure your settings:

Step 2: Click “Launch desktop” to open the Desktop service, you may need to wait for some
time:

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 27/32

Step 3: Click “Launch Test Desktop”, and you can use the Desktop service:

Using Jupyter Notebook:
Step 1: Go to ‘Interactive Apps -> Jupyter Notebook’, and configure the settings:

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 28/32

Step 2: Click “Launch” to open the Jupyter service, you may need to wait for some time:

Step 3: Click “Connect to Jupyter”, and you can use the Jupyter service:

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 29/32

Using Matlab:
Pre-Requisites:
Matlab requires a valid license to use, which the analytical environment will not provide. You
need to use your own licence. To activate the Matlab:

1. Open a Desktop Service

2. Open the Matlab in the terminal. Right click the “Open Terminal Here” to open a

terminal, then open Matlab using command: /mnt/MATLAB/R2021a/bin/matlab

3. Follow the instructions to active your matlab:

Step 1: Go to “Interactive Apps -> MATLAB”, and configure your settings:

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 30/32

Step 2: Click “Launch” to open the MATLAB service, you may need to wait for some time:

Step 3: Click “Launch Matlab”, and you can use the Matlab service:

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 31/32

Using RStudio Server:
Step 1: Go to “Interactive Apps -> RStudio Server”, and configure your settings:

Step 2: Click “Launch” to open the RStudio service, you may need to wait for some time:

 IDEA-FAST_D4.4_RequirementsSpecificationDataAnalyticsSW_V1.0.docx Page 32/32

Step 3: Click “Connect to RStudio Server”, and you can use the RStudio service:

